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Abstract

The nonlinear propagation of ion acoustic solitary waves are studied in a magnetized quantum plasma
consisting of cold inertia ions and inertialless quantum electrons and positrons, including exchange-
correlation effects., A Zakharov-Kuznetsov equation is derived by using the reductive perturbation method.
The effects of quantum plasma parameters on the propagation characteristics of the ion acoustic solitary
waves have been investigated. It is found that the phase velocity, amplitude and width of the solitary waves
are significantly affected by the presence of exchange-correlation potentials of electron and positron. Only
solitary wave width effected by both quantum diffraction and magnetic field strength. The width of the
solitary waves increases with the increase of both the quantum diffraction and magnetic field strength. The
increase in the positron concentration causes to diminish both the solitary waves amplitude and width. The
current results may be useful to understand the properties of ion acoustic waves propagating in dense space

plasma environments where the quantum effects are expected to dominate.

Keywords: lon-acoustic waves, Quantum plasma, Exchange-correlation.

1. Introduction

The electron—positron (EP) plasma is believed to exist in
a pulsar magnetosphere [1, 2], in bipolar outflows, in
active galactic nuclei [3], and in the early universe [4].
Though dominant constituents of these astrophysical
plasma are electrons and positron but in the atmosphere
around astrophysical objects, beside electron-positron
pairs a small number of heavy ions is also likely to be
present [5]. For example, the magnetosphere of the
neutron stars is filled with electron-positron plasma,
however, it is believed that it may have some fraction of
ions as well. The presence of some fraction of ions in the
neutron star magnetosphere is assumed to be originated
from some interior source such as a result of evaporation
or seismic processes on the surface of neutron star. The
ions can also enter in the magnetosphere of
neutron/pulsar from outside in the process of accretion
[6]. Accordingly, it is important to study the dynamics of
the nonlinear wave motions in an electron-positron-ion
(EPI) plasma. During the last three decades, EP and EPI
plasmas have attracted significant attention among

researchers [7-15]. Some of these investigations deal
with the nonlinear ion acoustic waves (IAWS) in the
framework of classical plasmas. On the other hand,
quantum plasmas have drawn attention of many
researchers due to its applications in different
environments, e.g. in super-dense astrophysical objects
[16] (such as the interior of Jupiter and massive white
dwarfs, magnetars, and neutron stars), in high-intensity
laser-produced plasmas [17, 18], and in ultra-small
electronic devices [19], quantum dots, nanowires [20],
carbon nanotubes [21], quantum diodes [22, 23],
biophotonics [24], ultra-cold plasmas [25], and micro-
plasmas [26].

One of the important properties of dense quantum
plasmas is that the plasma particles can be subject to new
significant quantum forces, one of them is the gradient
force of quantum Bohm potential [27] which arises due
to the separation of charges in a plasma. Another
important force arises due to the exchange-correlation
effects of dense plasma particles [28] where the
interaction of quantum particles can be separated into a
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Hartree term due to electrostatic potential of
electron/positron number density and the exchange-
correlation term due to the spin effect. Rahman et al. [29]
investigated small but finite amplitude electrostatic
solitary waves in a relativistically degenerate dense
magneto-plasma and derived a Zakharov-Kuznetsov
(ZK) equation by using the reductive perturbation
technique. Sahu et al.[30] studied the oblique
propagation of IAWSs in a magnetized degenerate dense
magneto-plasma. They assumed that the plasma is to be
rotating with angular frequency at an angle 6 to the
direction of the magnetic field. Paul et al. [31] studied the
nonlinear propagation of ion acoustic waves in
unmagnetized quantum plasma in the presence of an ion
beam using the one-dimensional quantum hydrodynamic
model. They have found that the formation and structure
of solitary waves are significantly affected by the ion
beam .

However, the propagation of ion acoustic solitary waves
in quantum plasma in the presence of electron/positron
exchange-correlation potential are not studied yet.
Therefore, the aim of the current paper is to investigate
the nonlinear propagation of quantum ion acoustic waves
(IAWSs) in a degenerate EPI plasma in the presence of
quantum Bohm potential and exchange-correlation
potential of electrons and positrons. Also, we consider
the electrons and positrons are obey the degeneracy
pressure law (Fermi pressure), while the inertial ions are
taken to be cold and magnetized. The plasma is assumed
to be embedded in a constant external magnetic field
pointing in the z-direction.

This paper is organized as follows: the basic equations
governing the quantum magneto-plasma system under
consideration are presented in Sect. 2. In Sect. 3, a
Zakharov-Kuznetsov (ZK) equation is derived using the
reductive perturbation method. The solitary wave
solution of the ZK equation and stability analysis are
obtained in Sect. 4. The properties of the electrostatic
solitary potential are discussed in Sect. 5. Finally, Sect. 6
is kept for conclusion.

2. Governing equations

Let us consider a collisionless magnetized EPI quantum
plasma composed of inertial positively charged ions and
inertialless  degenerated electrons and positrons,
including exchange-correlation effects. In dense
astrophysical environments, the Fermi pressure for the
ions is negligible as compared to that for the electrons
and positrons. So the pressure effects are neglected for
the ions, whereas the electrons and positrons are assumed
to obey the equation of state for a zero temperature Fermi
gas. At equilibrium, we have the charge neutrality
condition as nyg = n,q + n;o, Where neyo, n, and n;,
are the unperturbed number densities of electrons,
positrons and ions, respectively. We suppose that the

plasma model under consideration is subjected to
external magnetic field of strength B, along the z-axis
i.e. B = Bye,, where e, is the unit vector along the z-
axis. The nonlinear dynamics of IAWs propagating in
such quantum plasma model are governed by the
following equations

an;

a—t_l‘l'V'(Tliui):O, (1)
O L g Vs = =V + 5 (u x B) @
ot u; - vu; = m ¢ m u;

1 h? 1
0=—q;Vp ——VPp; +—V <—V2,/n-> — Ve, 3)
J nj ] Zm \/n—] J J
e
Vg =—(n, —mn —n,), )
€o

where n;(u;) is the number density (fluid velocity) of
ions, n; is the number density of electrons or positrons,
m; is the ion mass, m=m,=m, is the
electrons/positrons mass and ¢ is electrostatic potential.
Here, the subscript j = e for electrons and j = p for
positrons, g; is the charge of an electron or a positron
i.e.q. = —e forelectrons and q,, = e for positrons where
e is the electronic charge.

The two term in the right-hand side of Eq. (3) is due to
the degenerate Fermi pressure Pp; of electrons or
positrons, which is given by

5/3
p = 2o (1) -
Fj 5 njo ’

where Eg;(= kgTg;) is the Fermi energy and Ty =

h2(37'[2n]-0)2/3/2mk3 is the Fermi temperature of
electrons or positrons. The third term in Eq. (3)
represents the gradient of the Bohm potential
(corresponding to the quantum tunneling effect), and the
last term is the gradient of the exchange-correlation
potential of the degenerate plasma particles (electrons or
positrons), which is given by [28, 32]

0.985e2
yxe = — 1/3
Y ( 4me, >n]

where ag = 4mey h?/me? is the Bohr radius. In the

dense plasma, the condition 18.37azn’® « 1 is

satisfied, thus, the exchange-correlation potential V;*“can
be approximated as

v —16 (= \nt3 4 562 (1) n2/2 )
I 4me, i ’ m o

To simplify, all physical quantities appearing in the
above equations are to be appropriately normalized.
Accordingly, we normalize as follows: Ny = ng/ng,
U, =w/C; , and ¢ =¢@/(Er./e) , where C; =
(2kgTr,/m;)/? is the speed of ion acoustic waves and
U; = (Ui, Uy, Uy,) , With Uy, U, and Uy, are the
velocity of ions in x, y, and z directions, respectively.
The time and space variables are normalized as t — w;t

0.034
1+——=In(1 +18367a3n)%)|, (6)
agn;
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and r - (w,;/C;)r , respectively where w,; =
(e®n;y/eom;)V? is the ion plasma frequency.
Accordingly, we can rewrite the normalized basic
equations which describe the three dimensional
propagation of quantum ion acoustic solitary waves
(IASWs) as

N, | ONUi | ONUsy | ONUig

= 8
ot dox dy 0z 9, ®
AU AUy AU W, ¢
oc PUnTy HUn T Ve, = mg H ally, O)
Uy Uy Oy Oy 09
-2 St = 10
at x ax + Uly ay + UI.Z aZ ay QCZ le ( )
au,, au,, U, au, 0
ix iy iz Z = - S (11)
ot ox dy 0z 0z
9? 9? 9? 1
0,090,901 P N, (12)

9xZ | ay? 622_1—p ¢ 1-p

where p= npo/neo, and Qci = (A)Ci/(i)pi, Wep = eB/mi
is the ion gyro-frequency. The normalized momentum
equations of electrons and positrons are given by

H? (VA /N,\ 1
Vo + —\7( e) -+ 2y)UNZ? + aUNY? =0, (13)

2\ N,
H2 VZ
Vo - 7\7( \/\1/v——> +5 (o +2p3y)UNZ? — pY/3avWn,/? 1)
=0,

where H = wyh/JmmiC? . 6 =Tp,/Tpe , a=
1.6(e2n}}?/8meyEr, ), and y = 5.65(h?n%’ /2mE,).

3. Derive Zakharov-Kuznetsov equation

In order to derive a Zakharov-Kuznetsov (ZK) equation,
we employ the standard reductive perturbation technique
(RPT) [33]. Accordingly, we introduce the following
stretched coordinates

X =+ex,Y =ey, Z = Ve(z — Aob), T = Vedt, (15)

where € is a small parameter (0 < € < 1) measuring the
strength of the nonlinearity, and A, is the linear phase
velocity of IAW normalized by C;.

All dependent variables appearing in the Egs. (8)-(14) are
expanded about their equilibrium as a power series of €

as
N 1 Ngy N,
Uz |=0]|+€e| Ui |+ €| Uiz |+, s=ie,p  (16)
¢ 0 (N (o

and
Uy = €320y + €2Upy + -, 7 = X, Y. 7

Substituting Egs. (15)-(17) into the Egs. (8)-(14), and
then collecting the terms of like powers of €, in lowest
order, we obtain the following relations:

1
Ny = )1_% o1 (18)
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Uiz = A_od)l' (19)
Ngy = 3 Ny, = 3 20
el_l_ae¢1r pl — o__ap¢1r ( )
Ney — pNpy — (1-pNy; =0, (21)

where a, = a — 2y, and a,, = p'/3(a — 2p*/3y).
Now, substituting Egs. (18) and (20) into the Eq. (21), we
get the linear phase velocity of the IAW as

Ao = \/(1 ; p) A -a)(o—ay) . 22)

o—a,+p(1-a,)

It can be noted from Eq. (22) that the presence of the
exchange-correlation potential (via the parameters «a,,
a, or a, y) significantly modifies the linear phase
velocity of IASWSs. Similarly, we write first order x and
y-components of ion momentum equations as

1 0¢,

ix1 = _Qci Yy’ (23)
1 a¢1

i 24

1= ox (24)

To the next higher-order of €, we obtain the second order
x-and y-component of ion momentum equations as

Ao 0%,
o= 25
Uiz 02, 023X’ (25)
Ao 0%,
Upy = — y 26
W2 02 070y (26)

By following the same procedure, we can obtain
respectively the next higher-order continuity equation,
the z-component of ion momentum equation and the next
higher-order Poisson equation as

aNil ) aNiz anzZ aNiluizl anxZ aUlyZ =0 (27)
at 0 9z Jz dZ X oY ’
anzl aULZZ auizl a¢2
_ . P2 _ 28
7t 4o 37z + Uiz EYA + 27 0, (28)
52¢1 62¢1 624’1 1 14
T T ov: Tz - 1ophe T 1—pte  Ne (29

Here , the second order momentum equations of
electrons and positrons give

_ 9H? 3 3[1+2(y —a)]
Nez = 4(1 _ ae)z V2¢1 + (1 — C(e) ¢2 + 2(1 — ) ¢1 (30)
_ 9H? 24
Yy ) .
L 3lo+ 2Ry —a)] 42 1
2(0 — tzp) v

where V2= 9?/0X? + 8%/0Y? + 0%/0Z? . Solving the
system of Egs. (27)—(31) with the aid of Egs. (18)—(26),
we get finally the following nonlinear partial differential
equation

[ 0¢:  9°¢, a <52 0?

o TAP G T B P\ Yoz

>¢1 =0. (32)
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Equation (32) is a Zakharov-Kuznetsov equation
describing nonlinear propagation of three dimensions
IASWs in our model, in which the nonlinear coefficient
A is given as

A—i+ 343 p[a—2p1/3(a—p1/3y)]_1+2(y—a)
- 22'0 2(1 - P) (g' — ap)3 (1 - ae)3

and dispersion coefficients B and D are respectively
given by

B oHA 1
B=2+5a =0 : 2_(1—0()2]'
P)|(o-ap) e
p=p+ 0
- 203

4. Solitary wave solution of the ZK
equation and stability analysis

4.1. Solitary wave solution

To obtain explicit traveling wave solutions of quantum
ZK equation (32), we introduce the following traveling
wave transformation:

01X, Y, Z,71) = (), = LX+ LY + 1, Z —ur, (33)

where £ is the transformed coordinate in the co-moving
frame with speed u,. Here, I, [, and [, are the
directional cosine of the wave vector along the X, Y and
Z axes, respectively (satisfying I + 13 + 12 = 1). Now,
Applying Eg. (33) to Eq. (32) and integrating once with
the boundary conditions: ¢, d¢,/d&, d®¢,/dE* - 0
as & — oo, we get

d?¢y
2 =0 (34)

where A; = Al,/2 and B, = [,[BIZ + D(12 + (2)]. The
one-solitary wave solution of Eq. (34) is given by

—uyp; + A97 + By

¢, = ¢, sech? (%), (35)

where ¢, = 3uy/1,A is the amplitude, and W =
2./ B;/u, is the width of the quantum IASWs. Using the
relation E; = —V¢, with Eqg. (35), the normalized
electric field of the obliquely propagating three-
dimensional quantum 1ASWs becomes

E =3 (ﬂ)yz tanh(&/W) sech?(§/W) )

L AJBZ¥D(1-12) '
4.2. Stability analysis

In order to determine the stability or the properties of the
instability associated with a given plasma equilibrium;
we shall use a method based on energy considerations.
According to this method it is necessary to calculate the
change in potential energy of the plasma as a result of a
given perturbation. To this end, we multiply both sides
of Eq. (34) by d¢,/dé, and then integrating once with
taking into account the boundary conditions: ¢, ,

d,/dé, d?¢p,/dé? - 0 as & - oo, we obtain the
energy equation:

1 /dg,\?
z(%) +W¥(p) =0, (37)

where W(¢,)represents the potential energy (or Sagdeev
potential), which is given by

U, A
Y(g,) = _2_Bz¢1 +3—Bz¢13 (38)

For the existence of solitary wave solution of Eq. (32),
the condition d?¥(¢,)/d¢? < 0 must satisfy at¢ = 0.
From Eq. (38) we have

d*¥(¢;) U

Ty 39
a7 |,_, 2B (39)

It is clear from the Eqg. (39) that, the stable solitary wave
solutions will exist when u,/2B; > 0; otherwise stable
solitary waves do not exist in our quantum plasma
system. Since u, is always positive, then B; must be
greater than zero. To be B; > 0, the following condition
must satisfy

BIZ+D(1-13)>0, (40)

where IZ + 13 =1—1Z,and [, > 0.

5. Numerical results and discussion

In this section we investigated the properties of nonlinear
quantum IASWSs propagating in a magnetized dense
quantum plasma system consisting of cold mobile
positive ions, dense quantum electrons and positrons,
including exchange-correlation effect. The reductive
perturbation theory is used to derive the nonlinear ZK
equation (32) which is described the nonlinear IASWSs in
such plasma. Here, we apply our model to some typical
plasma parameters found in dense astrophysical
environments for electron-positron-ion quantum plasma
[34]: By =(01-1)x10°T , n,, = (0.1 -0.9) x
10%°m™3, ngo = 10°°m™3 and nyy = ngo — nypo. Figure
1 shows how the phase velocity 1, of quantum IAW vary
with respect to positron concentration (via the parameter
P = Nyo/Neo ) at fixed electron concentration n,, =
103°m 3. Dashed line is plotted with the presence of
exchange-correlation potential effect (via the parameters
a =0.32, and y = 0.59 ), while soled line is plotted
without exchange-correlation effect (via the parameters
a =0,y =0). Itis observer that the phase velocity A,
decrease with increasing the positron concentration
p(=nyo/nee) and the presence of the exchange-
correlation effect leads to an increase in phase velocity
Ao - Moreover, for large values of p, the effect of
exchange-correlation on phase velocity 1, becomes less
compared to small values of p.
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Fig.1: The variation of the phase velocity (4,) of IAWSs
against positron concentration p with (dashed line) and
without (solid line) of exchange-correlation effects,
alone with n,y =103m=3, H =0.3216, B, =5 X
10°T , Q.; = 0.0406,

To examine the impact of exchange-correlation effects
on the profile of quantum IASWSs, we plot the
electrostatic potential ¢, versus ¢ for two model,
namely, in the presence (dashed line) and in the absence
(solid line) of the exchange-correlation effects as shown
in Fig. 2. It is noticed from Fig. 2 that, the presence of
the exchange-correlation potential effects leads to an
increase in both the width and amplitude quantum
IASWs as depicted in Fig. 2 (dashed line). On the other
hand, the shorter and narrower quantum IASWs are
obtained with the absence of exchange-correlation
potential as depicted in Fig. 2 (solid line).

0.1

a=y=0 ----a=032yy=05%
0.09}f FRaRN
A

0.08f
0.07f
1
0.06}
0.05f
0.04f
0.03}
0.02f

0.01}

940 -30 -20 -10 0 10 20 30 40

Fig.2: The profile of IASWs in the presence (dashed line)
and absence (solid line) of exchange-correlation effects,
with n,y = 103°m=3, u = 0.3, H = 0.3216, p = 0.6,
Q. = 0.0406,l, = 0.8, and u, = 0.1.

To see the effect of the strength of magnetic field B, on
the behavior of the quantum IASWSs, we plot the
electrostatic potential ¢, versus & for different values of
magnetic field strength B, as shown in Fig 3. It is noted
from Fig 3 that the solitary wave width decreases as the
strength of magnetic field B, increases. Figure 3 also
indicates that the magnetic field does not affect the
solitary wave amplitude. Since the normalized ion gyro-
frequency Q; is mainly associated with B,, ion gyro-
frequency Q.;must increase with increasing the magnetic

field strength B,. Therefore, the solitary wave width will
be decrease with ion gyro-frequency £; as well.

0.1

——B,=3x10°T
............ By =4%105T
—=--By=5x10°T |

0.09}
0.08}
0.07}

P14 06}

0.05}
0.04}
0.03}
0.02}

0.01¢

—_ ...,

Fig.3: The profile of IASWs for different values of B,
with 71,y =103m™3 |, n;u =04x103m=3 , H =
03216, p=06,l,=08, a =032,y =0.59, and
uy = 0.1.

Figures 4 and 5 give the variations of the amplitude ¢,,
and width W of quantum IASWSs against positron
concentration p(= n,e/neo) , respectively, keeping
electron concentration n,y = 103°m=3. It is clear from
the various graphs in Figs. 4 and 5 that, the amplitude and
width of the quantum IASWs decreases with increase of
positron concentration p . Thus, the strength of the
electrostatic potential also decreases with increase of p.
The physical explanation for this is as follows: Since,
increase in positron concentration reduces the ion
concentration ( n;, ) through the charge neutrality
condition (i.e., n;p = ney —Mpe ) and since quantum
IASWs are mainly associated with the ion dynamics,
therefore, the width and amplitude must decrease with
increasing the positron concentration. Thus, the shorter
and narrower IASWs are obtained in the presence of
positron concentration as compared to the IASWSs
without the positrons.

0.16

0.1 D‘.Z 0:3 014 015 Oiﬁ 01.7 0‘.8 0.9
P

Fig.4: The variations of the solitary wave amplitude ¢,,

against positron concentration p with (dashed line) and

without (solid line) of exchange-correlation effects,

alone with n,o =1x103m=3, u=04, By=5x

105T and u, = 0.1
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45

%.1 0:2 D:3 014 015 016 0:7 DI.B 0.9
P

Fig.5: The variations of the solitary wave width W

against positron concentration p with (dashed line) and

without (solid line) of exchange-correlation effects,

alone with n,g =1x10%m=3, u=, B, =5 x 10°T,

[, =0.6and uy, = 0.1.

Furthermore, we can see from Figs. 4 and 5 that, both
amplitude ¢,,, and width W of quantum IASWs increase
with the presence of exchange-correlation potential and
the effects of exchange-correlation potential reduced
with p , especially at larger values of positron
concentration, e.g., p = 0.9.

Figure 6 shows the contour plot of the solitary wave
amplitude ¢,, as a function of positron concentration p
and the z-component of direction cosine [, in the
presence of exchange-correlation effects. It is obvious
from Fig. 6 that the solitary wave amplitude ¢,,,decreases
with the increase of both p and [,. Figure 7 shows the
contour plot of the solitary wave width W as a function
of p and 1,. Celery, the solitary wave width W decreases
with increasing values of p. On the other hand, we can
see from Fig. 7 that the width of solitary wave is
enhanced when 0.1 < [, < 0.58 and then decreases for
large values 0.58 < [, < 0.9.

0.8p 2e

3.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L,

Fig.6: The variations of the solitary wave amplitude

¢, against the direction cosine [, and positron

concentration p, alone with n,, = 103°m=3, u = 0.3,

By = 10°T,y = 0.59, a = 0.148 and u, = 0.1.

0-:1 iﬁs

01 02 03 04 05 06 07 08 09
L

Fig.7: The variations of the solitary wave width W

against the direction cosine [, and positron concentration

p, alone with n,, = 103°m=3, u = 0.3, B, = 10°T,

y = 0.59, a = 0.148 and u, = 0.1.

The effect of the quantum diffraction H on the solitary
waves width W is depicted in Fig. 8 for different values
of magnetic field strength B,. It is clear from this figure
that the width W of the solitary waves increases with the
increase of the quantum diffraction H, but decreases with
magnetic field strength B,. For given value of quantum
diffraction H, the solitary wave width decreases with the
increase of magnetic field strength B,, and the change
becomes larger with the increasing values of quantum
diffraction H.

50

—=="By=0.5x10°T

Bg=10°T P

40

30}

20

101

0.2 0.25 0.3 0.35 0.4 0.45 0.5
H

Fig.8: The variations of the solitary wave width W
against the quantum diffraction H for different values of
B,, alone with n,y = 1 x103°m=3, [, = 0.6 and u, =
0.1.

Furthermore, the behavior of the electric field E; profiles
associated with the IASWs are presented graphically as
shown in Figs. 9 and 10. Figure 9 displays the variation
of electric field E; against ¢ for different values of
positron concentration p. It is observed from Fig. 9 that
for small values of p, the electric field profiles spread
out, and become increasingly localized with greater
maximum amplitude for large values of p. Physically,
this phenomena is well-understood by noting that the
electric field is the negative gradient of the electrostatic
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potential ¢,, and hence the narrow solitary waves are
obtained for high positron concentration with steeper
slopes. Similarly, Fig.10 shows the variation of the
electric field E; against ¢ for different values of the
direction cosine L,,. Obviously, for smaller values of [, <
0.6, the electric field profiles spread out with a small
finite amplitudes, but as the parameter [, is increased in
the rang 0.6 < I, < 1, the electric field profiles become
more localized with enhanced amplitudes.

0.015
p=02
----p=04
001 p=106
i
0.005 i . o
ir ~<
ir " ~ o
E, i T, =
S
=~ G
S .. 4
~ i
-0.005 S i
i
Saw -7 3
-0.01}
-0.015 : ‘ ‘ :
%0 -40 20 0 20 40 60

3
Fig.9: The electric field profilesE; involving IASWS for
different values of positron concentration p, along with,
Ngo = 103°m™3, By =10°T, a = 0.148, y = 0.59 ,
l,=0.6and u, = 0.1.

0.03 :
1,=03
----1,=0.6
0.02 1,=0.9
0.01 TR~
E, " e TSN
O
S 4
o 7
~ ., s
-0.01 S e
-0.02
0.03 ‘ . . . . .
30 30 20 -10 0 10 20 30 40

¢
Fig.10: The electric field E; profiles involving IASWs

for different values of the direction cosine [, along with
p=06, u=03, n,=10m="3 B, =10°T, a =
0.148,y = 0.59 and u, = 0.1.

6. Conclusions

To conclude, we have investigated the three dimensional
propagation of quantum IASWSs in a dense magneto-
plasma, comprising of non-degenerate cold ions and
dense quantum electrons and positrons. The electrons
and positrons are treated to be degenerate while the cold
ions are inertial and classical. By employing the
reductive perturbation technique, a ZK equation is
derived in terms of electrostatic potential and its solution
has been analyzed. Only compressive quantum IASWs
can propagate in such dense magneto-plasma. The
propagation characteristics of compressive quantum
IASWs are profoundly affected by the presence of

magnetic field strength B, positron concentration p, the
direction cosine [, and the exchange-correlation
potential (via the parameters a and y) as well as quantum
diffraction (via the parameter H ). It was found that
variations of p and [, results in the mitigation of the
amplitude as well as the width of IASWSs. Moreover, the
increase of ion gyrofrequency Q.; (via the increase of
magnetic field strength B,) makes the solitary waves
narrower with a constant amplitude. Also, the width of
the IASWSs increases with the quantum diffraction H.
Furthermore, we observe that the effects of positron
concentration p and direction cosine [, significantly
modify the associated bipolar electric field structures.
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