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Abstract 

The nonlinear propagation of ion acoustic solitary waves are studied in a magnetized quantum plasma 

consisting of cold inertia ions and inertialless quantum electrons and positrons, including exchange-

correlation effects., A Zakharov-Kuznetsov equation is derived by using the reductive perturbation method. 

The effects of quantum plasma parameters on the propagation characteristics of the ion acoustic solitary 

waves have been investigated. It is found that the phase velocity, amplitude and width of the solitary waves 

are significantly affected by the presence of exchange-correlation potentials of electron and positron. Only 

solitary wave width effected by both quantum diffraction and magnetic field strength. The width of the 

solitary waves increases with the increase of both the quantum diffraction and magnetic field strength. The 

increase in the positron concentration causes to diminish both the solitary waves amplitude and width. The 

current results may be useful to understand the properties of ion acoustic waves propagating in dense space 

plasma environments where the quantum effects are expected to dominate. 
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1. Introduction 

The electron–positron (EP) plasma is believed to exist in 

a pulsar magnetosphere [1, 2], in bipolar outflows, in 

active galactic nuclei [3], and in the early universe [4]. 

Though dominant constituents of these astrophysical 

plasma are electrons and positron but in the atmosphere 

around astrophysical objects, beside electron-positron 

pairs a small number of heavy ions is also likely to be 

present [5]. For example, the magnetosphere of the 

neutron stars is filled with electron-positron plasma, 

however, it is believed that it may have some fraction of 

ions as well. The presence of some fraction of ions in the 

neutron star magnetosphere is assumed to be originated 

from some interior source such as a result of evaporation 

or seismic processes on the surface of neutron star. The 

ions can also enter in the magnetosphere of 

neutron/pulsar from outside in the process of accretion 

[6]. Accordingly, it is important to study the dynamics of 

the nonlinear wave motions in an electron-positron-ion 

(EPI) plasma. During the last three decades, EP and EPI 

plasmas have attracted significant attention among 

researchers [7-15]. Some of these investigations deal 

with the nonlinear ion acoustic waves (IAWs) in the 

framework of classical plasmas. On the other hand, 

quantum plasmas have drawn attention of many 

researchers due to its applications in different 

environments, e.g. in super-dense astrophysical objects 

[16] (such as the interior of Jupiter and massive white 

dwarfs, magnetars, and neutron stars), in high-intensity 

laser-produced plasmas [17, 18], and in ultra-small 

electronic devices [19], quantum dots, nanowires [20], 

carbon nanotubes [21], quantum diodes [22, 23], 

biophotonics [24], ultra-cold plasmas [25], and micro-

plasmas [26]. 

One of the important properties of dense quantum 

plasmas is that the plasma particles can be subject to new 

significant quantum forces, one of them is the gradient 

force of quantum Bohm potential [27] which arises due 

to the separation of charges in a plasma. Another 

important force arises due to the exchange-correlation 

effects of dense plasma particles [28] where the 

interaction of quantum particles can be separated into a 
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Hartree term due to electrostatic potential of 

electron/positron number density and the exchange-

correlation term due to the spin effect. Rahman et al. [29] 

investigated small but finite amplitude electrostatic 

solitary waves in a relativistically degenerate dense 

magneto-plasma and derived a Zakharov-Kuznetsov 

(ZK) equation by using the reductive perturbation 

technique. Sahu et al.[30] studied the oblique 

propagation of IAWs in a magnetized degenerate dense 

magneto-plasma. They assumed that the plasma is to be 

rotating with angular frequency at an angle 𝜃  to the 

direction of the magnetic field. Paul et al. [31] studied the 

nonlinear propagation of ion acoustic waves in 

unmagnetized quantum plasma in the presence of an ion 

beam using the one-dimensional quantum hydrodynamic 

model. They have found that the formation and structure 

of solitary waves are significantly affected by the ion 

beam . 

However, the propagation of ion acoustic solitary waves 

in quantum plasma in the presence of electron/positron 

exchange-correlation potential are not studied yet. 

Therefore, the aim of the current paper is to investigate 

the nonlinear propagation of quantum ion acoustic waves 

(IAWs) in a degenerate EPI plasma in the presence of 

quantum Bohm potential and exchange-correlation 

potential of electrons and positrons. Also, we consider 

the electrons and positrons are obey the degeneracy 

pressure law (Fermi pressure), while the inertial ions are 

taken to be cold and magnetized. The plasma is assumed 

to be embedded in a constant external magnetic field 

pointing in the z-direction. 

This paper is organized as follows: the basic equations 

governing the quantum magneto-plasma system under 

consideration are presented in Sect. 2. In Sect. 3, a 

Zakharov-Kuznetsov (ZK) equation is derived using the 

reductive perturbation method. The solitary wave 

solution of the ZK equation and stability analysis are 

obtained in Sect. 4. The properties of the electrostatic 

solitary potential are discussed in Sect. 5. Finally, Sect. 6 

is kept for conclusion. 

2. Governing equations  

Let us consider a collisionless magnetized EPI quantum 

plasma composed of inertial positively charged ions and 

inertialless degenerated electrons and positrons, 

including exchange-correlation effects. In dense 

astrophysical environments, the Fermi pressure for the 

ions is negligible as compared to that for the electrons 

and positrons. So the pressure effects are neglected for 

the ions, whereas the electrons and positrons are assumed 

to obey the equation of state for a zero temperature Fermi 

gas. At equilibrium, we have the charge neutrality 

condition as 𝑛𝑒0 = 𝑛𝑝0 + 𝑛𝑖0 , where 𝑛𝑒0 , 𝑛𝑝0  and 𝑛𝑖0 

are the unperturbed number densities of electrons, 

positrons and ions, respectively. We suppose that the 

plasma model under consideration is subjected to 

external magnetic field of strength 𝐵0 along the z-axis 

i.e. 𝑩 = 𝐵0𝒆𝒛, where 𝒆𝒛 is the unit vector along the z-

axis. The nonlinear dynamics of IAWs propagating in 

such quantum plasma model are governed by the 

following equations 

𝜕𝑛𝑖

𝜕𝑡
+ 𝛁 ∙ (𝑛𝑖𝒖𝑖) = 0, (1) 

𝜕𝒖𝑖

𝜕𝑡
+ (𝒖𝑖 ∙ 𝛁)𝒖𝑖 = −

𝑒

𝑚𝑖

𝛁𝜑 +
𝑒

𝑚𝑖

(𝒖𝑖 × 𝑩) (2) 

0 = −𝑞𝑗𝛁𝜑 −
1

𝑛𝑗

𝛁𝑃𝐹𝑗 +
ℏ2

2𝑚
𝛁 (

1

√𝑛𝑗

∇2√𝑛𝑗) − 𝛁𝑉𝑗
𝑥𝑐 , (3) 

∇2𝜑 =
𝑒

𝜖0

(𝑛𝑒 − 𝑛𝑖 − 𝑛𝑝), (4) 

where 𝑛𝑖(𝒖𝑖) is the number density (fluid velocity) of 

ions, 𝑛𝑗 is the number density of electrons or positrons, 

𝑚𝑖  is the ion mass, 𝑚 = 𝑚𝑒 = 𝑚𝑝  is the 

electrons/positrons mass and 𝜑 is electrostatic potential. 

Here, the subscript 𝑗 = 𝑒  for electrons and 𝑗 = 𝑝  for 

positrons, 𝑞𝑗  is the charge of an electron or a positron 

i.e.𝑞𝑒 = −𝑒 for electrons and 𝑞𝑝 = 𝑒 for positrons where 

𝑒 is the electronic charge.  

The two term in the right-hand side of Eq. (3) is due to 

the degenerate Fermi pressure 𝑃𝐹𝑗  of electrons or 

positrons, which is given by 

𝑃𝐹𝑗 =
2𝐸𝐹𝑗𝑛𝑗0

5
(

𝑛𝑗

𝑛𝑗0

)

5 3⁄

, (5) 

where 𝐸𝐹𝑗(= 𝑘𝐵𝑇𝐹𝑗)  is the Fermi energy and 𝑇𝐹𝑗 =

ℏ2(3𝜋2𝑛𝑗0)
2 3⁄

2𝑚⁄ 𝑘𝐵  is the Fermi temperature of 

electrons or positrons. The third term in Eq. (3) 

represents the gradient of the Bohm potential 

(corresponding to the quantum tunneling effect), and the 

last term is the gradient of the exchange-correlation 

potential of the degenerate plasma particles (electrons or 

positrons), which is given by [28, 32] 

𝑉𝑗
𝑥𝑐 = − (

0.985𝑒2

4𝜋𝜖0

) 𝑛𝑗
1 3⁄

[1 +
0.034

𝑎𝐵𝑛𝑗
1 3⁄

ln(1 + 18.367𝑎𝐵𝑛𝑗
1 3⁄

)], (6) 

where 𝑎𝐵 = 4𝜋𝜖0 ℏ2 𝑚𝑒2⁄  is the Bohr radius. In the 

dense plasma, the condition 18.37𝑎𝐵𝑛𝑗
1 3⁄

≪ 1  is 

satisfied, thus, the exchange-correlation potential 𝑉𝑗
𝑥𝑐can 

be approximated as 

𝑉𝑗
𝑥𝑐 ≈ −1.6 (

𝑒2

4𝜋𝜖0

) 𝑛𝑗
1 3⁄

+ 5.62 (
ℏ2

𝑚
) 𝑛𝑗

2 3⁄
, (7) 

To simplify, all physical quantities appearing in the 

above equations are to be appropriately normalized. 

Accordingly, we normalize as follows: 𝑁𝑠 = 𝑛𝑠 𝑛𝑠0⁄ , 

𝑼𝑖 = 𝒖𝑖 𝐶𝑖⁄ , and 𝜙 = 𝜑 (𝐸𝐹𝑒 𝑒⁄ )⁄ , where 𝐶𝑖 =

(2𝑘𝐵𝑇𝐹𝑒 𝑚𝑖⁄ )1 2⁄  is the speed of ion acoustic waves and 

𝑼𝑖 = (𝑈𝑖𝑥, 𝑈𝑖𝑦, 𝑈𝑖𝑧) , with 𝑈𝑖𝑥, 𝑈𝑖𝑦  and 𝑈𝑖𝑧  are the 

velocity of ions in 𝑥, 𝑦, and 𝑧 directions, respectively. 

The time and space variables are normalized as 𝑡 → 𝜔𝑝𝑖𝑡 
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and r → (𝜔𝑝𝑖 𝐶𝑖⁄ )𝑟 , respectively where 𝜔𝑝𝑖 =

(𝑒2𝑛𝑖0 𝜖0𝑚𝑖⁄ )1 2⁄  is the ion plasma frequency. 

Accordingly, we can rewrite the normalized basic 

equations which describe the three dimensional 

propagation of quantum ion acoustic solitary waves 

(IASWs) as 

𝜕𝑁𝑖

𝜕𝑡
+

𝜕𝑁𝑖𝑈𝑖𝑥

𝜕𝑥
+

𝜕𝑁𝑖𝑈𝑖𝑦

𝜕𝑦
+

𝜕𝑁𝑖𝑈𝑖𝑧

𝜕𝑧
= 0, (8) 

𝜕𝑈𝑖𝑥

𝜕𝑡
+ 𝑈𝑖𝑥

𝜕𝑈𝑖𝑥

𝜕𝑥
+ 𝑈𝑖𝑦

𝜕𝑈𝑖𝑥

𝜕𝑦
+ 𝑈𝑖𝑧

𝜕𝑈𝑖𝑥

𝜕𝑧
= −

𝜕𝜙

𝜕𝑥
+ Ω𝑐𝑖𝑈𝑖𝑦, (9) 

𝜕𝑈𝑖𝑦

𝜕𝑡
+ 𝑈𝑖𝑥

𝜕𝑈𝑖𝑦

𝜕𝑥
+ 𝑈𝑖𝑦

𝜕𝑈𝑖𝑦

𝜕𝑦
+ 𝑈𝑖𝑧

𝜕𝑈𝑖𝑦

𝜕𝑧
= −

𝜕𝜙

𝜕𝑦
− Ω𝑐𝑖𝑈𝑖𝑥, (10) 

𝜕𝑈𝑖𝑧

𝜕𝑡
+ 𝑈𝑖𝑥

𝜕𝑈𝑖𝑧

𝜕𝑥
+ 𝑈𝑖𝑦

𝜕𝑈𝑖𝑧

𝜕𝑦
+ 𝑈𝑖𝑧

𝜕𝑈𝑖𝑧

𝜕𝑧
= −

𝜕𝜙

𝜕𝑧
, (11) 

∂2𝜙

∂x2
+

∂2𝜙

∂y2
+

∂2𝜙

∂z2
=

1

1 − 𝑝
𝑁𝑒 −

𝑝

1 − 𝑝
𝑁𝑝 − 𝑁𝑖 , (12) 

where 𝑝 = 𝑛𝑝0 𝑛𝑒0⁄ , and Ω𝑐𝑖 = 𝜔𝑐𝑖 𝜔𝑝𝑖⁄ , 𝜔𝑐𝑖 = 𝑒𝐵 𝑚𝑖⁄  

is the ion gyro-frequency. The normalized momentum 

equations of electrons and positrons are given by 

𝛁𝜙 +
𝐻2

2
𝛁 (

∇2√𝑁𝑒

√𝑁𝑒

) −
1

2
(1 + 2𝛾)𝛁𝑁𝑒

2 3⁄
+ 𝛼𝛁𝑁𝑒

1 3⁄
= 0, (13) 

𝛁𝜙 −
𝐻2

2
𝛁 (

∇2√𝑁𝑝

√𝑁𝑝

) +
1

2
(𝜎 + 2𝑝2 3⁄ 𝛾)𝛁𝑁𝑝

2 3⁄
− 𝑝1 3⁄ 𝛼𝛁𝑁𝑝

1 3⁄

= 0, 

(14) 

where 𝐻 = 𝜔𝑝𝑖ℏ √𝑚𝑚𝑖𝐶𝑖
2⁄ , 𝜎 = 𝑇𝐹𝑝 𝑇𝐹𝑒⁄ , 𝛼 =

1.6(𝑒2𝑛𝑒0
1 3⁄

8𝜋𝜖0𝐸𝐹𝑒⁄ ), and 𝛾 = 5.65(ℏ2𝑛𝑒0
2 3⁄

2𝑚𝐸𝐹𝑒⁄ ). 

3.  Derive Zakharov-Kuznetsov equation  

In order to derive a Zakharov-Kuznetsov (ZK) equation, 

we employ the standard reductive perturbation technique 

(RPT) [33]. Accordingly, we introduce the following 

stretched coordinates  

𝑋 = √𝜖𝑥, 𝑌 = √𝜖𝑦, 𝑍 = √𝜖(𝑧 − 𝜆0𝑡), 𝜏 =  √𝜖3𝑡,  (15) 

where 𝜖 is a small parameter (0 < 𝜖 < 1) measuring the 

strength of the nonlinearity, and 𝜆0  is the linear phase 

velocity of IAW normalized by 𝐶𝑖.  

All dependent variables appearing in the Eqs. (8)-(14) are 

expanded about their equilibrium as a power series of 𝜖 

as 

(

𝑁𝑠

𝑈𝑖𝑧

𝜙
) = (

1
0
0

) + 𝜖 (

𝑁𝑠1

𝑈𝑖𝑧1

𝜙1

) + 𝜖2 (

𝑁𝑠2

𝑈𝑖𝑧2

𝜙1

) + ⋯ , 𝑠 = 𝑖, 𝑒, 𝑝 (16) 

and 

𝑈𝑖𝑟 = 𝜖3 2⁄ 𝑈𝑖𝑟1 + 𝜖2𝑈𝑖𝑟2 + ⋯ , 𝑟 = 𝑥, 𝑦. (17) 

Substituting Eqs. (15)-(17) into the Eqs. (8)-(14), and 

then collecting the terms of like powers of 𝜖, in lowest 

order, we obtain the following relations: 

𝑁𝑖1 =
1

𝜆0
2 𝜙1,  (18) 

𝑈𝑖𝑧1 =
1

𝜆0

𝜙1, (19) 

𝑁𝑒1 =
3

1 − 𝛼𝑒

𝜙1, 𝑁𝑝1 = −
3

𝜎 − 𝛼𝑝

𝜙1, (20) 

𝑁𝑒1 − 𝑝𝑁𝑝1 − (1 − 𝑝)𝑁𝑖1 = 0, (21) 

where 𝛼𝑒 = 𝛼 − 2𝛾, and 𝛼𝑝 = 𝑝1 3⁄ (𝛼 − 2𝑝1 3⁄ 𝛾).  

Now, substituting Eqs. (18) and (20) into the Eq. (21), we 

get the linear phase velocity of the IAW as 

𝜆0 = √(
1 − 𝑝

3
)

(1 − 𝛼𝑒)(𝜎 − 𝛼𝑝)

𝜎 − 𝛼𝑝 + 𝑝(1 − 𝛼𝑒)
. (22) 

It can be noted from Eq. (22) that the presence of the 

exchange-correlation potential (via the parameters 𝛼𝑒 , 

𝛼𝑝  or 𝛼 , 𝛾 ) significantly modifies the linear phase 

velocity of IASWs. Similarly, we write first order 𝑥 and 

𝑦-components of ion momentum equations as 

𝑈𝑖𝑥1 = −
1

Ω𝑐𝑖

𝜕𝜙1

𝜕𝑌
, (23) 

𝑈𝑖𝑦1 =
1

Ω𝑐𝑖

𝜕𝜙1

𝜕𝑋
. (24) 

To the next higher-order of 𝜖, we obtain the second order 

𝑥-and 𝑦-component of ion momentum equations as 

𝑈𝑖𝑥2 =
𝜆0

Ω𝑐𝑖
2

𝜕2𝜙1

𝜕𝑍𝜕𝑋
, (25) 

𝑈𝑖𝑦2 =
𝜆0

Ω𝑐𝑖
2

𝜕2𝜙1

𝜕𝑍𝜕𝑌
. (26) 

By following the same procedure, we can obtain 

respectively the next higher-order continuity equation, 

the z-component of ion momentum equation and the next 

higher-order Poisson equation as 

𝜕𝑁𝑖1

𝜕𝜏
− 𝜆0

𝜕𝑁𝑖2

𝜕𝑍
+

∂𝑈𝑖𝑧2

∂Z
+

∂𝑁𝑖1𝑈𝑖𝑧1

∂Z
+

∂𝑈𝑖𝑥2

∂X
+

∂𝑈𝑖𝑦2

∂Y
= 0, (27) 

𝜕𝑈𝑖𝑧1

𝜕𝜏
− 𝜆0

𝜕𝑈𝑖𝑧2

𝜕𝑍
+ 𝑈𝑖𝑧1

𝜕𝑈𝑖𝑧1

𝜕𝑍
+

𝜕𝜙2

𝜕𝑍
= 0, (28) 

∂2𝜙1

∂X2
+

∂2𝜙1

∂Y2
+

∂2𝜙1

∂Z2
=

1

1 − 𝑝
𝑁𝑒2 −

𝑝

1 − 𝑝
𝑁𝑝2 − 𝑁𝑖2. (29) 

Here , the second order momentum equations of 

electrons and positrons give 

𝑁𝑒2 =
9𝐻2

4(1 − 𝛼𝑒)2
∇2𝜙1 +

3

(1 − 𝛼𝑒)
𝜙2 +

3[1 + 2(𝛾 − 𝛼)]

2(1 − 𝛼𝑒)3
𝜙1

2, (30) 

𝑁𝑝2 =
9𝐻2

4(𝜎 − 𝛼𝑝)
2 ∇2𝜙1 −

3

(𝜎 − 𝛼𝑝)
𝜙2

+
3[𝜎 + 2𝑝1 3⁄ (𝑝1 3⁄ 𝛾 − 𝛼)]

2(𝜎 − 𝛼𝑝)
3 𝜙1

2, 

(31) 

where ∇2= ∂2 ∂X2⁄ + ∂2 ∂Y2⁄ + ∂2 ∂Z2⁄ . Solving the 

system of Eqs. (27)–(31) with the aid of Eqs. (18)–(26), 

we get finally the following nonlinear partial differential 

equation  

𝜕𝜙1

𝜕𝜏
+ 𝐴𝜙1

∂𝜙1

∂Z
+ 𝐵

𝜕3𝜙1

𝜕𝑍3
+ 𝐷

∂

∂Z
(

𝜕2

𝜕𝑋2
+

𝜕2

𝜕𝑌2
) 𝜙1 = 0. (32) 
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Equation (32) is a Zakharov-Kuznetsov equation 

describing nonlinear propagation of three dimensions 

IASWs in our model, in which the nonlinear coefficient 

𝐴 is given as 

𝐴 =
3

2𝜆0

+
3𝜆0

3

2(1 − 𝑝)
{
𝑝[𝜎 − 2𝑝1 3⁄ (𝛼 − 𝑝1 3⁄ 𝛾)]

(𝜎 − 𝛼𝑝)
3 −

1 + 2(𝛾 − 𝛼)

(1 − 𝛼𝑒)3
}, 

and dispersion coefficients 𝐵  and 𝐷  are respectively 

given by 

𝐵 =
𝜆0

3

2
+

9𝐻2𝜆0
3

8(1 − 𝑝)
[

𝑝

(𝜎 − 𝛼𝑝)
2 −

1

(1 − 𝛼𝑒)2
], 

𝐷 = 𝐵 +
𝜆0

3

2Ω𝑐𝑖
2 . 

4. Solitary wave solution of the ZK 

equation and stability analysis 

4.1. Solitary wave solution  

To obtain explicit traveling wave solutions of quantum 

ZK equation (32), we introduce the following traveling 

wave transformation: 

𝜙1(𝑋, 𝑌, 𝑍, 𝜏) = 𝜙1(𝜉), 𝜉 = 𝑙𝑥𝑋 + 𝑙𝑦𝑌 + 𝑙𝑧𝑍 − 𝑢0𝜏, (33) 

where 𝜉 is the transformed coordinate in the co-moving 

frame with speed 𝑢0 . Here, 𝑙𝑥 , 𝑙𝑦  and 𝑙𝑧  are the 

directional cosine of the wave vector along the 𝑋, 𝑌 and 

𝑍 axes, respectively (satisfying 𝑙𝑥
2 + 𝑙𝑦

2 + 𝑙𝑧
2 = 1). Now, 

Applying Eq. (33) to Eq. (32) and integrating once with 

the boundary conditions: 𝜙1 , 𝑑𝜙1 𝑑𝜉⁄ , 𝑑2𝜙1 𝑑𝜉2⁄ → 0 

as 𝜉 → ∞, we get 

−𝑢0𝜙1 + 𝐴𝑙𝜙1
2 + 𝐵𝑙

𝑑2𝜙1

𝑑𝜉2
= 0, (34) 

where 𝐴𝑙 = 𝐴𝑙𝑧 2⁄  and 𝐵𝑙 = 𝑙𝑧[𝐵𝑙𝑧
2 + 𝐷(𝑙𝑥

2 + 𝑙𝑦
2)].  The 

one-solitary wave solution of Eq. (34) is given by 

𝜙1 = 𝜙𝑚 sech2 (
𝜉

W
), (35) 

where 𝜙𝑚 = 3𝑢0 𝑙𝑧𝐴⁄  is the amplitude, and W =

2√𝐵𝑙 𝑢0⁄  is the width of the quantum IASWs. Using the 

relation 𝐸1 = −∇𝜙1  with Eq. (35), the normalized 

electric field of the obliquely propagating three-

dimensional quantum IASWs becomes 

𝐸1 = 3 (
𝑢0

𝑙𝑧

)
3 2⁄ tanh(𝜉 W⁄ ) sech2(𝜉 W⁄ )

𝐴√𝐵𝑙𝑧
2 + 𝐷(1 − 𝑙𝑧

2)
, (36) 

4.2. Stability analysis 

In order to determine the stability or the properties of the 

instability associated with a given plasma equilibrium; 

we shall use a method based on energy considerations. 

According to this method it is necessary to calculate the 

change in potential energy of the plasma as a result of a 

given perturbation. To this end, we multiply both sides 

of Eq. (34) by 𝑑𝜙1 𝑑𝜉⁄ , and then integrating once with 

taking into account the boundary conditions: 𝜙1 , 

𝑑𝜙1 𝑑𝜉⁄ , 𝑑2𝜙1 𝑑𝜉2⁄ → 0  as 𝜉 → ∞ , we obtain the 

energy equation: 

1

2
(

𝑑𝜙1

𝑑𝜉
)

2

+ Ψ(𝜙1) = 0, (37) 

where Ψ(𝜙1)represents the potential energy ( or Sagdeev 

potential), which is given by 

Ψ(𝜙1) = −
𝑢0

2𝐵𝑙

𝜙1
2 +

𝐴𝑙

3𝐵𝑙

𝜙1
3. (38) 

For the existence of solitary wave solution of Eq. (32), 

the condition 𝑑2Ψ(𝜙1) 𝑑𝜙1
2⁄ < 0 must satisfy at𝜙 = 0. 

From Eq. (38) we have  

𝑑2Ψ(𝜙1)

𝑑𝜙1
2 |

𝜙1=0

= −
𝑢0

2𝐵𝑙

. (39) 

It is clear from the Eq. (39) that, the stable solitary wave 

solutions will exist when 𝑢0 2𝐵𝑙⁄ > 0; otherwise stable 

solitary waves do not exist in our quantum plasma 

system. Since 𝑢0 is always positive, then 𝐵𝑙  must be 

greater than zero. To be 𝐵𝑙 > 0, the following condition 

must satisfy 

𝐵𝑙𝑧
2 + 𝐷(1 − 𝑙𝑧

2) > 0, (40) 

where 𝑙𝑥
2 + 𝑙𝑦

2 = 1 − 𝑙𝑧
2, and 𝑙𝑧 > 0.  

5. Numerical results and discussion 

In this section we investigated the properties of nonlinear 

quantum IASWs propagating in a magnetized dense 

quantum plasma system consisting of cold mobile 

positive ions, dense quantum electrons and positrons, 

including exchange-correlation effect. The reductive 

perturbation theory is used to derive the nonlinear ZK 

equation (32) which is described the nonlinear IASWs in 

such plasma. Here, we apply our model to some typical 

plasma parameters found in dense astrophysical 

environments for electron-positron-ion quantum plasma 

[34]: 𝐵0 = (0.1 − 1) × 106 𝑇 , 𝑛𝑝0 = (0.1 − 0.9) ×

1030𝑚−3, 𝑛𝑒0 = 1030𝑚−3 and 𝑛𝑖0 = 𝑛𝑒0 − 𝑛𝑝0. Figure 

1 shows how the phase velocity 𝜆0 of quantum IAW vary 

with respect to positron concentration (via the parameter 

𝑝 = 𝑛𝑝0 𝑛𝑒0⁄ ) at fixed electron concentration 𝑛𝑒0 =

1030𝑚−3 . Dashed line is plotted with the presence of 

exchange-correlation potential effect (via the parameters 

𝛼 = 0.32 , and 𝛾 = 0.59  ), while soled line is plotted 

without exchange-correlation effect (via the parameters 

𝛼 = 0, 𝛾 = 0 ). It is observer that the phase velocity 𝜆0 

decrease with increasing the positron concentration 

𝑝(= 𝑛𝑝0 𝑛𝑒0⁄ )  and the presence of the exchange-

correlation effect leads to an increase in phase velocity 

𝜆0 . Moreover, for large values of 𝑝 , the effect of 

exchange-correlation on phase velocity 𝜆0 becomes less 

compared to small values of 𝑝.  
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Fig.1: The variation of the phase velocity (𝜆0) of IAWs 

against positron concentration 𝑝 with (dashed line) and 

without (solid line) of exchange-correlation effects, 

alone with 𝑛𝑒0 = 1030𝑚−3 , 𝐻 = 0.3216 , 𝐵0 = 5 ×

105𝑇 , Ω𝑐𝑖 = 0.0406, 

To examine the impact of exchange-correlation effects 

on the profile of quantum IASWs, we plot the 

electrostatic potential 𝜙1  versus 𝜉  for two model, 

namely, in the presence (dashed line) and in the absence 

(solid line) of the exchange-correlation effects as shown 

in Fig. 2. It is noticed from Fig. 2 that, the presence of 

the exchange-correlation potential effects leads to an 

increase in both the width and amplitude quantum 

IASWs as depicted in Fig. 2 (dashed line). On the other 

hand, the shorter and narrower quantum IASWs are 

obtained with the absence of exchange-correlation 

potential as depicted in Fig. 2 (solid line). 

 
Fig.2: The profile of IASWs in the presence (dashed line) 

and absence (solid line) of exchange-correlation effects, 

with 𝑛𝑒0 = 1030𝑚−3 , 𝜇 = 0.3 , 𝐻 = 0.3216 , 𝑝 = 0.6 , 

Ω𝑐𝑖 = 0.0406,𝑙𝑧 = 0.8, and 𝑢0 =  0.1. 

To see the effect of the strength of magnetic field 𝐵0 on 

the behavior of the quantum IASWs, we plot the 

electrostatic potential 𝜙1 versus 𝜉 for different values of 

magnetic field strength 𝐵0 as shown in Fig 3. It is noted 

from Fig 3 that the solitary wave width decreases as the 

strength of magnetic field 𝐵0  increases. Figure 3 also 

indicates that the magnetic field does not affect the 

solitary wave amplitude. Since the normalized ion gyro-

frequency Ω𝑐𝑖  is mainly associated with 𝐵0 , ion gyro-

frequency Ω𝑐𝑖must increase with increasing the magnetic 

field strength 𝐵0. Therefore, the solitary wave width will 

be decrease with ion gyro-frequency Ω𝑐𝑖 as well. 

 
Fig.3: The profile of IASWs for different values of 𝐵0, 

with 𝑛𝑒0 = 1030𝑚−3 , 𝑛𝑖0 = 0.4 × 1030𝑚−3 , 𝐻 =

0.3216 , 𝑝 = 0.6 , 𝑙𝑧 = 0.8 , 𝛼 = 0.32 , 𝛾 = 0.59 , and 

𝑢0 =  0.1. 

Figures 4 and 5 give the variations of the amplitude 𝜙𝑚 

and width 𝑊  of quantum IASWs against positron 

concentration 𝑝(= 𝑛𝑝0 𝑛𝑒0⁄ ) , respectively, keeping 

electron concentration 𝑛𝑒0 = 1030𝑚−3. It is clear from 

the various graphs in Figs. 4 and 5 that, the amplitude and 

width of the quantum IASWs decreases with increase of 

positron concentration 𝑝 . Thus, the strength of the 

electrostatic potential also decreases with increase of 𝑝. 

The physical explanation for this is as follows: Since, 

increase in positron concentration reduces the ion 

concentration ( 𝑛𝑖0 ) through the charge neutrality 

condition (i.e., 𝑛𝑖0 = 𝑛𝑒0 − 𝑛𝑝0  ) and since quantum 

IASWs are mainly associated with the ion dynamics, 

therefore, the width and amplitude must decrease with 

increasing the positron concentration. Thus, the shorter 

and narrower IASWs are obtained in the presence of 

positron concentration as compared to the IASWs 

without the positrons.  

 
Fig.4: The variations of the solitary wave amplitude 𝜙𝑚 

against positron concentration 𝑝 with (dashed line) and 

without (solid line) of exchange-correlation effects, 

alone with 𝑛𝑒0 = 1 × 1030𝑚−3 , 𝜇 = 0.4 , 𝐵0 = 5 ×

105𝑇 and 𝑢0 = 0.1 
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Fig.5: The variations of the solitary wave width 𝑊 

against positron concentration 𝑝 with (dashed line) and 

without (solid line) of exchange-correlation effects, 

alone with 𝑛𝑒0 = 1 × 1030𝑚−3 , 𝜇 = , 𝐵0 = 5 × 105𝑇 , 

𝑙𝑧 = 0.6 and 𝑢0 = 0.1. 

 

 Furthermore, we can see from Figs. 4 and 5 that, both 

amplitude 𝜙𝑚 and width 𝑊 of quantum IASWs increase 

with the presence of exchange-correlation potential and 

the effects of exchange-correlation potential reduced 

with 𝑝 , especially at larger values of positron 

concentration, e.g., 𝑝 = 0.9.  

Figure 6 shows the contour plot of the solitary wave 

amplitude 𝜙𝑚 as a function of positron concentration 𝑝 

and the 𝑧 -component of direction cosine 𝑙𝑧  in the 

presence of exchange-correlation effects. It is obvious 

from Fig. 6 that the solitary wave amplitude 𝜙𝑚decreases 

with the increase of both 𝑝 and 𝑙𝑧. Figure 7 shows the 

contour plot of the solitary wave width 𝑊 as a function 

of 𝑝 and 𝑙𝑧. Celery, the solitary wave width 𝑊 decreases 

with increasing values of 𝑝. On the other hand, we can 

see from Fig. 7 that the width of solitary wave is 

enhanced when 0.1 < 𝑙𝑧 < 0.58 and then decreases for 

large values 0.58 < 𝑙𝑧 ≤ 0.9. 

 
Fig.6: The variations of the solitary wave amplitude 

𝜙𝑚 against the direction cosine 𝑙𝑧  and positron 

concentration 𝑝 , alone with 𝑛𝑒0 = 1030𝑚−3 , 𝜇 = 0.3 , 

𝐵0 = 106𝑇, 𝛾 = 0.59, 𝛼 = 0.148 and 𝑢0 = 0.1. 

 
Fig.7: The variations of the solitary wave width 𝑊 

against the direction cosine 𝑙𝑧 and positron concentration 

𝑝 , alone with 𝑛𝑒0 = 1030𝑚−3 , 𝜇 = 0.3 , 𝐵0 = 106𝑇 , 

𝛾 = 0.59, 𝛼 = 0.148 and 𝑢0 = 0.1. 

 The effect of the quantum diffraction 𝐻 on the solitary 

waves width 𝑊 is depicted in Fig. 8 for different values 

of magnetic field strength 𝐵0. It is clear from this figure 

that the width 𝑊 of the solitary waves increases with the 

increase of the quantum diffraction 𝐻, but decreases with 

magnetic field strength 𝐵0. For given value of quantum 

diffraction 𝐻, the solitary wave width decreases with the 

increase of magnetic field strength 𝐵0, and the change 

becomes larger with the increasing values of quantum 

diffraction 𝐻.  

 
Fig.8: The variations of the solitary wave width 𝑊 

against the quantum diffraction 𝐻 for different values of 

𝐵0, alone with 𝑛𝑒0 = 1 × 1030𝑚−3, 𝑙𝑧 = 0.6 and 𝑢0 =

0.1. 

Furthermore, the behavior of the electric field 𝐸1 profiles 

associated with the IASWs are presented graphically as 

shown in Figs. 9 and 10. Figure 9 displays the variation 

of electric field 𝐸1  against 𝜉  for different values of 

positron concentration 𝑝. It is observed from Fig. 9 that 

for small values of 𝑝, the electric field profiles spread 

out, and become increasingly localized with greater 

maximum amplitude for large values of 𝑝. Physically, 

this phenomena is well-understood by noting that the 

electric field is the negative gradient of the electrostatic 
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potential 𝜙1 , and hence the narrow solitary waves are 

obtained for high positron concentration with steeper 

slopes. Similarly, Fig.10 shows the variation of the 

electric field 𝐸1  against 𝜉  for different values of the 

direction cosine 𝑙𝑧. Obviously, for smaller values of 𝑙𝑧 <

0.6, the electric field profiles spread out with a small 

finite amplitudes, but as the parameter 𝑙𝑧 is increased in 

the rang 0.6 < 𝑙𝑧 < 1, the electric field profiles become 

more localized with enhanced amplitudes. 

 
Fig.9: The electric field profiles𝐸1 involving IASWS for 

different values of positron concentration 𝑝, along with, 

𝑛𝑒0 = 1030𝑚−3 , 𝐵0 = 106 𝑇 , 𝛼 = 0.148 , 𝛾 = 0.59  , 

𝑙𝑧 = 0.6 and 𝑢0 = 0.1. 

 
Fig.10: The electric field 𝐸1 profiles involving IASWs 

for different values of the direction cosine 𝑙𝑧, along with 

𝑝 = 0.6 , 𝜇 = 0.3 , 𝑛𝑒0 = 1030𝑚−3 , 𝐵0 = 106 𝑇 , 𝛼 =

0.148, 𝛾 = 0.59 and 𝑢0 = 0.1. 

6. Conclusions 

To conclude, we have investigated the three dimensional 

propagation of quantum IASWs in a dense magneto-

plasma, comprising of non-degenerate cold ions and 

dense quantum electrons and positrons. The electrons 

and positrons are treated to be degenerate while the cold 

ions are inertial and classical. By employing the 

reductive perturbation technique, a ZK equation is 

derived in terms of electrostatic potential and its solution 

has been analyzed. Only compressive quantum IASWs 

can propagate in such dense magneto-plasma. The 

propagation characteristics of compressive quantum 

IASWs are profoundly affected by the presence of 

magnetic field strength 𝐵0, positron concentration 𝑝, the 

direction cosine 𝑙𝑧  and the exchange-correlation 

potential (via the parameters 𝛼 and 𝛾) as well as quantum 

diffraction (via the parameter 𝐻  ). It was found that 

variations of 𝑝  and 𝑙𝑧 , results in the mitigation of the 

amplitude as well as the width of IASWs. Moreover, the 

increase of ion gyrofrequency Ω𝑐𝑖  (via the increase of 

magnetic field strength 𝐵0 ) makes the solitary waves 

narrower with a constant amplitude. Also, the width of 

the IASWs increases with the quantum diffraction 𝐻 . 

Furthermore, we observe that the effects of positron 

concentration 𝑝  and direction cosine 𝑙𝑧  significantly 

modify the associated bipolar electric field structures.  

References 

[1] P.A. Sturrock, "A model of pulsars" Astrophys. J. 

164 (1971) 529-556 doi:10.1086/150865 

[2] M.A. Ruderman, P.G. Sutherland, "theory of 

pulsars: polar gaps, sparks, and coherent microwave 

radiation" Astrophys. J. 196 (1975) 51-72 

doi:10.1086/153393 

[3] H.R. Miller, P.J. Witta, "Active Galactic Nuclei", 

Springer-Verlag, Berlin, 1987. 

[4] G.W. Gibbons, S.W. Hawking, and S. Siklos, "The 

Very Early Universe", Cambridge University Press, 

Cambridge, 1983.  

[5] S. M. Mahajan, V.I. Berezhiani, and R. 

Miklaszewski, "On the robustness of the localized 

spatiotemporal structures in electron–positron–ion 

plasmas" Phys. Plasmas 5 (9) (1998) 3264 

https://doi.org/10.1063-1.872994 

[6] V.K. Valiulina and A.E. Dubinov, "Magnetosonic 

cylindrical soliton in electron-positron-ion plasma" 

Astrophys. Space Sci. 337 (1) (2012) 201-207 

doi:10.1007/s10509-011-0805-8 

[7] P. K. Shukla, N. N. Rao, M. Y. Yu, and N. L. 

Tsintsadze, "Relativistic nonlinear effects in 

plasmas" Phys. Rep. 138 (1-2) (1986) 1-149. 

https://doi.org/10.1016/0370-1573(86)90157-2 

[8] V. I. Bereztiani, D. D. Tskhakaya, and P. K. Shukla, 

"Pair production in a strong wake field driven by an 

intense short laser pulse" Phys. Rev. A 46 (10) 

(1992) 6608 

https://doi.org/10.1103/PhysRevA.46.6608 

[9] V. I. Bereztiani and S. M. Mahajan, " Large 

Amplitude Localized Structures in a Relativistic 

Electron-Positron Ion Plasma" Phys. Rev. Lett. 73 

(8) (1994) 

1110.https://doi.org/10.1103/PhysRevLett.73.1110 

[10] S. I. Popel, S. V. Vladimirov, and P. K. Shukla, 

"Ion‐acoustic solitons in electron–positron–ion 

plasmas" Phys. Plasmas 2 (3) (1995) 716 

https://doi.org/10.1063/1.871422 

[11] W. M. Moslem, "Propagation of ion acoustic waves 

in a warm multicomponent plasma with an electron 

https://ui.adsabs.harvard.edu/link_gateway/1971ApJ...164..529S/doi:10.1086/150865
https://ui.adsabs.harvard.edu/link_gateway/1975ApJ...196...51R/doi:10.1086/153393
https://doi.org/10.1063-1.872994
https://ui.adsabs.harvard.edu/link_gateway/2012Ap&SS.337..201V/doi:10.1007/s10509-011-0805-8
https://doi.org/10.1016/0370-1573(86)90157-2
https://doi.org/10.1103/PhysRevA.46.6608
https://doi.org/10.1103/PhysRevLett.73.1110
https://doi.org/10.1063/1.871422


Pages 84-92 Propagation of Ion Acoustic Waves in a Magnetized Quantum Plasma in the Presence of Exchange-Correlation Effects 

 

91 EJUA-BA | June 2022 
 

beam" J. Plasma Phys. 61 (2) (1999) 177 -189. 

https://doi.org/10.1017/S0022377898007429 

[12] S. Mahmood, A. Mushtaq, and H. Saleem, "Ion 

acoustic solitary wave in homogeneous magnetized 

electron-positron-ion plasmas" New J. Phys. 5 

(2003) 28.1-28. 10.  

[13] N. Shukla and P. K. Shukla, "Generation of 

magnetic field fluctuations in relativistic electron–

positron magnetoplasmas" Phys. Lett. A 362 (2007) 

221-224. 

https://doi.org/10.1016/j.physleta.2006.09.095 

[14] I. Kourakis, F. Verheest, and N. Cramer, "Nonlinear 

perpendicular propagation of ordinary mode 

electromagnetic wave packets in pair plasmas and 

electron-positron-ion plasmas" Phys. Plasmas 14 

(2007) 022306. http://doi.org/10.1063/1.2446373 

[15] A. E. Dubinov and M. A. Sazonkin, "Nonlinear 

theory of ion-acoustic waves in an electron-

positron-ion plasma" Plasma Phys. Rep. 35 (2009) 

14-

24.https://doi.org/10.1134/S1063780X09010024 

[16] V. E. Zakharov and E.A. Kuznetsov, "Three-

dimensional solitons" Sov. Phys. JETP, 39 (2) 

(1974) 285-286.  

[17] M. Marklund and P. K. Shukla, "Nonlinear 

collective effects in photon–photon and photon–

plasma interactions" Rev. Mod. Phys. 78 (2) (2006). 

591. https://doi.org/10.1103/RevModPhys.78.591 

[18] S. H. Glenzer, G. Gregori, R. W. Lee, F. J. Rogers, 

S. W. Pollaine, and O. L. Landen, "Demonstration 

of Spectrally Resolved X-Ray Scattering in Dense 

Plasmas" Phys. Rev. Lett. 90 (17) (2003) 175002 

https://doi.org/10.1103/PhysRevLett.90.175002 

[19] P. A. Markowich, C. A. Ringhofer and C. 

Schmeiser, "Semiconductor Equations" Springer-

Verlag, New York, 1990. 

[20] G. V. Shpatakovskaya, "Semiclassical model of a 

one-dimensional quantum dot" J. Exp. Theor. Phys. 

102 (2006) 466. 

[21] Li Wei and You-Nian Wang, "Quantum ion-

acoustic waves in single-walled carbon nanotubes 

studied with a quantum hydrodynamic model" Phys. 

Rev. B 75 (2007) 193407. 

https://doi.org/10.1103/PhysRevB.75.193407 

[22] L. K. Ang, T. J. T. Kwan and Y. Y. Lau, "New 

Scaling of Child-Langmuir Law in the Quantum 

Regime" Phys. Rev. Lett. 91 (2003) 208303-1-

208303-4 

https://doi.org/10.1103/PhysRevLett.90.208303 

[23] L. K. Ang and W. S. Koh, Space-charge-limited 

flows in the quantum regime Phys. Plasmas 13 

(2006) 056701 https://doi.org/10.1063/1.2174834 

[24] D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. 

D. Lukin, Quantum optics with surface plasmons 

Phys. Rev. Lett. 97 (2006) 

053002https://doi.org/10.1103/PhysRevLett.97.053

002 

[25] T. C. Killian, "Ultracold plasmas blur the classical 

boundaries between the different states of matter. 

Newly observed electron-density waves could 

become useful probes of how electrons behave in 

this exotic regime" Nature (London) 441 (2006) 298 

[26] K. Becker, A. Koutsospyros, S. M. Yin, C. 

Christodoulatos, N. Abramzon, J. C. Joaquin, 

and G. Brelles-Marino, "Environmental and 

biological applications of microplasmas" Plasma 

Phys. Control. Fusion 47 (2005) B513  

[27] W.M. Moslem, P.K. Shukla, S. Ali, and R. 

Schlickeiser, "Quantum dust-acoustic double 

layers" Phys. Plasmas 14 (2007) 

042107https://doi.org/10.1063/1.2719633 

[28] L. Brey, J. Dempsey, N. F. Johnson, and B. I. 

Halperin, "Infrared optical absorption in imperfect 

parabolic quantum wells" Phys. Rev. B 42 (1990) 

1240-1247 

https://doi.org/10.1103/physrevb.42.1240 

[29] A. Rahman, S. ALI, A. Mushtaq, and A. Qamar, 

"Nonlinear ion acoustic excitations in relativistic 

degenerate astrophysical electron–positron–ion 

plasmas" J. Plasma Physics 79 (5) (2013) 817-823 

https://doi.org/10.1017/S0022377813000524 

[30] B. Sahu, A. Sinha, and R. Roychoudhury, "Ion-

acoustic waves in dense magneto-rotating quantum 

plasma" Phys. Plasmas 26 (2019) 072119-1-

072119-11 https://doi.org/10.1063/1.5082868 

[31] I. Paul, A. Chatterjee, and S. N. Paul, Nonlinear 

propagation of ion acoustic waves in quantum 

plasma in the presence of an ion beam , Paul and 

Laser Particle Beams 37 (4) (2019) 370-380 

https://doi.org/10.1017/S0263034619000697 

[32] S. A. Khan and Sunia Hassan, "Effects of electron 

exchange-correlation potential on electrostatic 

oscillations in single-walled carbon nanotubes" J. 

Appl. Phys. 115 (2014) 204304 

https://doi.org/10.1063/1.4878936 

[33] H. Washimi and T. Taniuti, "Propagation of Ion-

Acoustic Solitary Waves of Small Amplitude" Phys. 

Rev. Lett. 17 (19) (1966) 996 

https://doi.org/10.1103/PhysRevLett.17.996 

[34] W. Masood, A. M. Mirza, and M. Hanif, "Ion 

acoustic shock waves in electron-positron-ion 

quantum" Phys. Plasmas 15 (2008) 072106 

https://doi.org/10.1063/1.2949702 

Author information 

ORCID  or Email 

Mahmood A. H. Khaled: 0000-0001-5644-3271 

Ibrahim G. H. Loqman: 0000-0003-4730-4047 

Kauther I. Alkuhlani: ka.alkuhlani@gmail.com 

 

 

https://doi.org/10.1017/S0022377898007429
https://doi.org/10.1016/j.physleta.2006.09.095
http://doi.org/10.1063/1.2446373
https://doi.org/10.1134/S1063780X09010024
https://doi.org/10.1103/RevModPhys.78.591
https://doi.org/10.1103/PhysRevLett.90.175002
https://doi.org/10.1103/PhysRevB.75.193407
https://doi.org/10.1103/PhysRevLett.90.208303
https://doi.org/10.1063/1.2174834
https://doi.org/10.1103/PhysRevLett.97.053002
https://doi.org/10.1103/PhysRevLett.97.053002
https://doi.org/10.1063/1.2719633
https://doi.org/10.1103/physrevb.42.1240
https://doi.org/10.1017/S0022377813000524
https://doi.org/10.1063/1.5082868
https://doi.org/10.1017/S0263034619000697
https://doi.org/10.1063/1.4878936
https://doi.org/10.1103/PhysRevLett.17.996
https://doi.org/10.1063/1.2949702
https://orcid.org/0000-0001-5644-3271
https://orcid.org/0000-0003-4730-4047
mailto:ka.alkuhlani@gmail.com


EJUA 
Electronic Journal of University of Aden for Basic and Applied Sciences Khaled, Loqman and Alkuhlani Pages 84-92 

Vol. 3, No. 2, June 2022   

https://ejua.net 

 

2202  EJUA-BA 92 | يونيو 
 

 مقالة بحثية

 ممغنطة في وجود تأثيرات الارتباط التبادلي انتشار الموجات الصوتية الأيونية في بلازما كمية

 2كوثر إبراهيم الكحلانيو  2إبراهيم غالب لقمان، *،1،2مد حسن خالدحمحمود أ

 ، اليمنصنعاء، صنعاءجامعة  ،المحويت ،التربية، كلية الفيزياءقسم  1
 اليمن، صنعاء، صنعاء، جامعة العلومكلية  ،الفيزياء قسم 2

 771848483 967+؛ رقم الهاتف: mahkhaled@hotmail.comالبريد الالكتروني:  ؛محمود أحمد حسن خالد الباحث الممثلّ:* 

 2222 يونيو 22 / نشر في 2222 مايو 22 / قبل في: 2222 أبريل 22 استلم في:

 المُلخّص

لكترونات وا ،مكونة من ايونات قصورية باردة تم دراسة الانتشار اللاخطي للموجات السوليتونية الصوتية الأيونية في بلازما كمية ممغنطة

وف باستخدام كزناتس -وبوزترونات كمية غير قصورية وذلك في وجود تأثيرات الترابط التبادلي للجسيمات الكمية. تم اشتقاق معادلة زخروف 

. من خلال ةتية الأيونيالسوليتونية الصو طريقة الاضطراب المختزلة. تم دراسة تأثير بارامترات البلازما الكمية على خواص انتشار الموجات

الدراسة وجد أن سرعة طور الموجة وسعتها وعرضها تتأثر بشكل ملحوظ بوجود جهد الترابط التبادلي للالكترونات والبوزترونات. فقط تتأثر 

نات يؤدي إلى انخفاض عرض عرض الموجة بوجود كل من المجال المغناطيسي والانحراف الكمي. وجدنا أيضا أن زيادة كثافة البوزترو

ن ووسعة الموجة. نتائج هذه الدراسة قد تساهم في فهم خواص الموجات الصوتية الأيونية المنتشرة في بيئات بلازما الفضاء الكثيفة والتي يك

 فيها حضور للتأثيرات الكمية.

 .الارتباط التبادلي ،البلازما الكمية ،الموجات الصوتية الأيونية :المفتاحيةالكلمات 
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