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Abstract 

Brain tumors represent one of the most severe forms of cancer, posing significant challenges due to their 

complex nature and critical location. Accurate and early diagnosis is crucial for effective treatment and 

improved patient outcomes. In this study, we propose a novel hybrid deep learning model that combines the 

strengths of DenseNet121 and InceptionV2 architectures to enhance brain tumor classification accuracy. The 

Figshare Brain Tumor Dataset, comprising 3,064 T1-weighted contrast-enhanced MRI images from 233 

patients, is utilized to train and evaluate the proposed model. The dataset includes three primary tumor classes: 

glioma, meningioma, and pituitary tumors. Preprocessing steps such as normalization, resizing, and data 

augmentation are applied to ensure data consistency and enhance the model’s robustness. The DenseNet121 

component of the hybrid model facilitates efficient feature reuse through densely connected layers, while the 

InceptionV2 component captures multi-scale contextual information via parallel convolutional layers. This 

combination allows the model to leverage detailed and high-level features, improving classification 

performance. The proposed hybrid model is evaluated using standard metrics, demonstrating significant 

improvements in accuracy, robustness, and generalization compared to single architecture models. This study 

highlights the potential of hybrid deep learning models in advancing brain tumor classification, offering a 

promising direction for future research and clinical applications. 
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1. Introduction 

1.1. Background 

Brain tumors are a significant health concern due to their 

potential to cause severe neurological damage and death. 

They are characterized by the uncontrolled growth of 

abnormal cells in the brain, leading to the disruption of 

normal brain function. According to the World Health 

Organization (WHO), brain tumors account for 

approximately 1.8% of all cancers diagnosed globally, 

with an estimated annual incidence rate of 6 per 100,000 

individuals [1]. Early and accurate detection of brain 

tumors is crucial for effective treatment planning, 

improved prognosis, and enhanced patient survival rates 

[2]. Magnetic Resonance Imaging (MRI) is the gold 

standard imaging modality for brain tumor diagnosis due 

to its high-resolution images that reveal detailed 

anatomical structures and tumor characteristics [3]. MRI 

provides superior soft-tissue contrast compared to other 

imaging techniques, making it invaluable for identifying 

brain tumors and assessing their size, location, and effect 

on surrounding tissues [4]. 

1.2. Challenges 

Despite significant advancements in imaging technology 

and analysis methods, brain tumor classification remains 

a challenging task due to several factors: 

1.2.1. Variability in Tumor Size, Location, and Type 

Brain tumors exhibit substantial heterogeneity in terms 

of size, location, and type. Tumors can range from a few 

millimeters to several centimeters in diameter and can be 

located in various regions of the brain, each with unique 

anatomical and functional properties [5]. Additionally, 

brain tumors can be classified into primary tumors 

(originating in the brain) and secondary tumors 
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(metastatic), each with different histopathological 

subtypes [6].  

1.2.2. Imaging Variability  

MRI scans are acquired using different protocols and 

parameters, resulting in variability in image quality and 

appearance [7]. Differences in scanner types, imaging 

sequences, and acquisition settings can introduce noise 

and artifacts, complicating the development of robust 

classification models that generalize well across diverse 

datasets.  

1.2.3. Limited Annotated Data  

High-quality annotated medical image datasets are 

essential for training and validating deep learning 

models. However, obtaining annotated brain tumor 

images is labor-intensive and time-consuming, often 

requiring expert radiologist input [8]. The scarcity of 

annotated data limits the performance and 

generalizability of deep learning models [9].  

1.2.4. Class Imbalance 

Brain tumor datasets often exhibit class imbalance, with 

certain tumor types or grades being underrepresented 

[10]. This imbalance can bias the learning process, 

resulting in suboptimal performance in detecting and 

classifying less common tumor types [11].  

1.2.5. Interpretability of Models  

Deep learning models, particularly Convolutional Neural 

Networks (CNNs), are often considered black boxes due 

to their complex architectures and non-linear 

transformations [12]. The lack of interpretability hinders 

clinical adoption, as healthcare professionals require 

understandable and reliable explanations for model 

predictions to trust and effectively use these systems in 

clinical practice [13].  

1.3. Objective  

The primary objective of this research is to enhance the 

accuracy and robustness of brain tumor classification by 

leveraging a novel hybrid deep learning architecture that 

combines DenseNet121 and InceptionV2 models. The 

proposed model aims to:  

1.3.1. Enhance Feature Representation  

By integrating DenseNet121 and InceptionV2 

architectures, the model can capture both detailed and 

highlevel features from brain MRI images. 

DenseNet121’s densely connected layers facilitate 

feature reuse and gradient flow, while InceptionV2’s 

parallel convolutions capture multi-scale contextual 

information, which is essential for distinguishing 

different types of brain tumors [14, 15].  

1.3.2. Improve Robustness and Generalization  

The hybrid model aims to improve robustness and 

generalization across different MRI datasets by 

leveraging the complementary strengths of DenseNet121 

and InceptionV2. This approach can mitigate the impact 

of imaging variability and enhance the model’s 

performance in diverse clinical settings [16]. 

1.3.3. Reduce Computational Complexity  

Although DenseNet121 and InceptionV2 are deep 

architectures, their parallel integration can be optimized 

to reduce computational complexity without 

compromising performance. Techniques such as 

depthwise separable convolutions and efficient layer 

designs can be employed to enhance computational 

efficiency [17]. 

1.4. Significance  

This research aims to advance the field of brain tumor 

classification by developing a novel hybrid deep learning 

model that combines DenseNet121 and InceptionV2 

architectures. The proposed model’s ability to capture 

both detailed and high-level features, improve robustness 

and generalization, reduce computational complexity, 

and increase interpretability could significantly enhance 

the accuracy and clinical utility of brain tumor 

classification systems.  

In summary, this paper presents a comprehensive 

approach to improving brain tumor classification using a 

hybrid deep learning model. The following sections will 

provide a detailed overview of the proposed 

methodology, experimental setup, results, and 

discussions. 

2. Related Work  

The field of brain tumor classification has benefited 

significantly from advances in deep learning, particularly 

with the use of Convolutional Neural Networks (CNNs). 

Numerous studies have demonstrated the effectiveness 

of CNNs in accurately classifying brain tumors from 

MRI images. This section reviews the most relevant 

studies, focusing on methodologies and their respective 

performances, emphasizing hybrid models and the 

application of DenseNet and Inception architectures.  

Early applications of deep learning in brain tumor 

classification were marked by the use of simple CNN 

architectures. Pereira et al. [10] developed a CNN model 

for brain tumor segmentation, achieving high accuracy 

by leveraging the hierarchical feature extraction 

capabilities of CNNs. This study laid the groundwork for 

subsequent research, highlighting the potential of deep 

learning in medical image analysis. Another pivotal 

study by Havaei et al. [18] introduced a two-pathway 

CNN for brain tumor segmentation, which utilized both 
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local and global contextual features. The dual-pathway 

approach allowed the model to capture fine details and 

broader contextual information simultaneously, 

significantly improving segmentation performance 

compared to single-pathway models.  

As the field progressed, deeper and more complex 

architectures were explored. I¸sın et al. [19] provided a 

comprehensive review of deep learning approaches for 

medical image analysis, emphasizing the potential of 

deep architectures to enhance classification accuracy. 

Kamnitsas et al. [20] presented a 3D CNN model for 

brain lesion segmentation, employing a dual pathway 

architecture to process multi-scale inputs. Their model 

achieved state-of-the-art results, underscoring the 

importance of multi-scale processing in medical image 

analysis.  

Hybrid models, which combine different deep learning 

architectures, have been proposed to leverage the 

strengths of multiple models. Zhang et al. [21] developed 

a hybrid model that combined a CNN with a Long Short-

Term Memory (LSTM) network for brain tumor 

segmentation. The integration of LSTM allowed the 

model to capture temporal dependencies in the data, 

leading to improved performance compared to single-

model approaches.  

In the domain of volumetric medical image 

segmentation, C  ̧i¸cek et al. [22] proposed a 3D U-Net 

model that combined the U-Net architecture with 3D 

convolutions. This model effectively handled volumetric 

data, demonstrating the advantages of combining 

architectural elements from different models.  

DenseNet and Inception models have shown 

considerable promise in various medical imaging tasks 

due to their unique architectural features. DenseNet, 

introduced by Huang et al. [14], features densely 

connected layers that promote feature reuse and enhance 

gradient flow, addressing the vanishing gradient problem 

commonly encountered in deep networks. This 

architecture has been successfully applied to medical 

image classification, as demonstrated by Rajpurkar et al. 

[23], who used DenseNet for pneumonia detection from 

chest X-rays, achieving state-of-the-art performance.  

Inception models, originally proposed by Szegedy et al. 

[24], utilize parallel convolutional layers with different 

filter sizes to capture multi-scale features. This approach 

allows the model to learn both fine-grained 3 details and 

broader contextual information. In the context of medical 

imaging, Inception models have been applied to various 

tasks with notable success. For instance, Esteva et al. [25] 

employed an Inception-based model for skin cancer 

classification, achieving performance on par with 

dermatologists.  

Combining DenseNet and Inception models can 

potentially harness the strengths of both architectures, 

leading to improved performance in brain tumor 

classification. Liu et al. [26] proposed a hybrid model 

that integrated DenseNet and Inception architectures for 

breast cancer classification from ultrasound images. The 

hybrid model outperformed single-architecture models, 

demonstrating the benefits of combining different deep 

learning approaches.  

The use of transfer learning has also been explored to 

enhance model performance in medical image 

classification. Shin et al. [27] investigated the use of 

transfer learning with CNNs for thoracic disease 

classification, showing significant improvements in 

classification accuracy. Similarly, Tajbakhsh et al. [28] 

demonstrated the effectiveness of transfer learning in 

medical image analysis, highlighting its potential to 

leverage pre-trained models for improved performance 

in domain-specific tasks.  

Data augmentation techniques are crucial for training 

robust deep learning models, particularly in the medical 

imaging domain where annotated data is limited. Shorten 

and Khoshgoftaar [29] provided a comprehensive survey 

of image data augmentation techniques, emphasizing 

their importance in preventing overfitting and improving 

model generalization. Advanced augmentation 

techniques, such as synthetic data generation using 

Generative Adversarial Networks (GANs), have also 

been explored. Frid-Adar et al. [30] demonstrated the use 

of GANs for synthetic data augmentation in liver lesion 

classification, significantly enhancing model 

performance.  

Despite the advancements in deep learning for brain 

tumor classification, several challenges remain. 

Variability in imaging protocols, limited annotated data, 

and class imbalance are significant hurdles that need to 

be addressed. Hybrid models that combine the strengths 

of different architectures, such as DenseNet and 

Inception, offer a promising approach to overcome these 

challenges. By leveraging the complementary features of 

these architectures, hybrid models can achieve improved 

robustness, generalization, and interoperability. The 

related work in brain tumor classification using deep 

learning has demonstrated significant progress, with 

various architectures and methodologies being explored. 

The integration of DenseNet and Inception models in a 

hybrid approach represents a promising direction for 

future research, offering the potential to enhance 

classification accuracy and clinical utility. The following 

sections of this paper will detail the proposed hybrid 

model, experimental setup, results, and discussions, 

building on the insights gained from the reviewed 

literature. 

3. Dataset 

For this research, we utilized the” Figshare Brain Tumor 

Dataset,” which is publicly available and widely 
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recognized for its comprehensive collection of brain MRI 

images. This dataset provides a robust foundation for 

developing and evaluating deep learning models for 

brain tumor classification.  

The Figshare Brain Tumor Dataset contains a total of 

3,064 T1-weighted contrast-enhanced MRI images from 

233 patients diagnosed with brain tumors. The dataset is 

categorized into three primary classes: glioma, 

meningioma, and pituitary tumors. Each class represents 

a distinct type of brain tumor with unique characteristics 

and anatomical locations. 

 Gliomas are a type of tumor that originate in the glial 

cells of the brain. They are further classified into high-

grade gliomas (HGG) and low-grade gliomas (LGG) 

based on their malignancy. The dataset includes images 

of both HGG and LGG, providing a comprehensive 

representation of glioma variations. Meningiomas are 

tumors that arise from the meninges, the membranous 

layers surrounding the brain and spinal cord. These 

tumors are typically benign but can cause significant 

health issues due to their location and size. Pituitary 

tumors are located in the pituitary gland and can affect 

hormone production, leading to various endocrine 

disorders. These tumors can be either benign or 

malignant. The dataset is provided in JPEG format with 

dimensions of 512x512 pixels. Each image is labeled 

with the corresponding tumor type, facilitating 

supervised learning for classification tasks. Before 

utilizing the images for training and evaluation, several 

preprocessing steps were applied to ensure consistency 

and enhance the quality of the data. The pixel values of 

the images were normalized to a range of [0, 1]. This step 

helps in standardizing the input data, making it easier for 

the deep learning model to learn and generalize. All 

images were resized 4 to 224x224 pixels to match the 

input size requirements of the DenseNet121 and 

InceptionV2 models. This resizing ensures that the 

images are compatible with the pre-trained networks 

used in this research. To mitigate the risk of overfitting 

and improve the model’s robustness, data augmentation 

techniques were applied. These techniques included 

random rotations, horizontal and vertical flips, zooming, 

and shifting. Data augmentation helps in artificially 

increasing the size of the training set and exposes the 

model to a wider variety of image conditions. 

4. Transfer 

Learning Transfer learning is a powerful technique in 

deep learning where a pre-trained model, trained on a 

large dataset, is fine-tuned for a specific task on a smaller 

dataset. This approach leverages the knowledge acquired 

by the pre-trained model, enabling efficient learning and 

improved performance, especially when the target 

dataset is limited. In this research, we utilize transfer 

learning with DenseNet121 and InceptionV2 

architectures for brain tumor classification. 

4.1. DenseNet121  

DenseNet121 is a densely connected convolutional 

network, which encourages feature reuse and improves 

gradient flow. The key idea behind DenseNet is to 

connect each layer to every other layer in a feed-forward 

fashion. For a DenseNet with L layers, there are 
𝐿(𝐿+1) 

2
  

direct connections. This dense connectivity alleviates the 

vanishing gradient problem, strengthens feature 

propagation, and reduces the number of parameters. The 

output of the l-th layer is defined as: 

xl = Hl ([x0, x1, . . . , xl−1])                                                          (1) 

where [x0, x1, . . . , xl−1] represents the concatenation of 

the feature maps produced by layers 0 to l − 1, and Hl(·) 

is a composite function of three consecutive operations: 

batch normalization (BN), a rectified linear unit (ReLU), 

and a 3 × 3 convolution (Conv).  

For transfer learning, we initialize DenseNet121 with 

pre-trained weights from the ImageNet dataset. The final 

classification layer is replaced with a new fully 

connected layer with a softmax activation function to 

match the number of brain tumor classes:  

y = softmax(WhL + b)                                                      (2) 

where hL is the feature vector from the last dense block, 

W and b are the weights and biases of the new fully 

connected layer, and y is the predicted probability 

distribution over the classes. 

4.2. InceptionV2 

InceptionV2, an improved version of the original 

Inception architecture, introduces several enhancements 

to increase computational efficiency and performance. 

The Inception module uses multiple convolutional filters 

of different sizes to capture various spatial features and 

concatenates their outputs. An Inception module’s output 

can be represented as: 

(x)] 3×3(x), MaxPool5×5(x), Conv3×3(x), Conv1×1= [Conv y

(3) 

where x is the input feature map, Conv1×1, Conv3×3, and 

Conv5×5 are convolutions with different kernel sizes, and 

MaxPool3×3 is a max-pooling operation. Similar to 

DenseNet121, we initialize InceptionV2 with pre-trained 

weights from the ImageNet dataset. The final layer is 

replaced with a new fully connected layer with a softmax 

activation function to match the number of brain tumor 

classes: 

y = softmax(Wh + b)                                                    (4) 

where h is the concatenated feature vector from the last 

Inception module, W and b are the weights and biases of 

the new fully connected layer, and y is the predicted 

probability distribution over the classes. 
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Fig. 1: Proposed Model 

 
 

4.3. Hybrid Model 

In our hybrid model, the feature representations from 

DenseNet121 and InceptionV2 are combined to leverage 

the strengths of both architectures. The concatenated 

feature vector hconcat is given by: 

hconcat = [hDenseNet, hInception]                                                   (5) 

where hDenseNet is the feature vector from the 

DenseNet121 model and hInception is the feature vector 

from the InceptionV2 model. The concatenated features 

are then fed into a fully connected layer with a softmax 

activation function to produce the final classification: 

y = softmax(Wconcathconcat + bconcat)                                (6) 

where Wconcat and bconcat are the weights and biases of the 

new fully connected layer, and y is the predicted 

probability distribution over the brain tumor classes. 

Transfer learning significantly accelerates the training 

process and improves the performance of the hybrid 

model by leveraging the pre-trained weights from large-

scale datasets. This approach enables the model to 

generalize better, especially when the target dataset is 

relatively small, as in the case of the Figshare Brain 

Tumor Dataset. The Proposed Model diagram is depicted 

in (Figure 1) 

5. Results and Discussion 

In this section, we present and discuss the results 

obtained from our hybrid deep learning model, which 

combines DenseNet121 and InceptionV2 architectures 

for brain tumor classification. The evaluation metrics 

used include accuracy, precision, recall, F1-score, 

confusion matrix, and Receiver Operating Characteristic 

(ROC) curve. 

5.1. Evaluation Metrics 

The following metrics are used to evaluate the 

performance of the classification model:  

5.1.1. Accuracy: 

Accuracy = 
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                    (7) 

where TP represents true positives, TN true negatives, FP 

false positives, and FN false negatives. Accuracy 

measures the overall correctness of the model.  

5.1.2. Precision:  

Precision = 
𝑇𝑃 

𝑇𝑃 +  𝐹𝑃 
                                                              (8) 

Precision indicates the proportion of positive 

identifications that are actually correct.   

5.1.3. Recall (Sensitivity):  

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                            (9) 

Recall measures the proportion of actual positives that 

are correctly identified by the model. 4. F1-score:  

F1-score =2 ×
Precision × Recall

Precision + Recall
                                            (10) 

The F1-score is the harmonic mean of precision and 

recall, providing a single metric that balances both 

concerns.  

5.1.4. Confusion Matrix: 

A confusion matrix is a table used to describe the 

performance of a classification model by displaying the 

true positives, false positives, true negatives, and false 

negatives.  

5.1.5. ROC Curve and AUC: 

The ROC curve plots the true positive rate (recall) 

against the false positive rate (1-specificity). The Area 

Under the Curve (AUC) summarizes the performance; a 

higher AUC indicates better performance. 

5.2. Results  

The model was evaluated on the test set, and the 

following results were obtained:  
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5.2.1. Accuracy: 97%  

5.2.2. Precision, Recall, and F1-score for each 

class:  

- Class 1 - Precision: 1.00, Recall: 0.88, F1-score: 0.93 

- Class 2 - Precision: 1.00, Recall: 1.00, F1-score: 1.00 

- Class 3 - Precision: 0.93, Recall: 1.00, F1-score: 0.97 

The confusion matrix and ROC curves are shown in 

Figures 2 and 3, respectively. 

6. Discussion  

The results demonstrate that our hybrid deep learning 

model achieves high performance in classifying brain 

tumors, as evidenced by the high accuracy, precision, 

recall, and F1-scores across all classes.  

6.1. Accuracy and Class-Specific Metrics: 

The overall accuracy of 97% indicates that the model 

performs well in distinguishing between the three classes 

of brain tumors. Class-specific metrics show high 

precision, recall, and F1-scores, with Class 2 achieving 

perfect scores across all metrics. Class 1 shows a slightly 

lower recall, which suggests that a small number of true 

positives were misclassified, as indicated by the 

confusion matrix where 4 instances of Class 1 were 

classified as Class 3. Despite this, the high precision for 

Class 1 indicates that when the model predicts Class 1, it 

is almost always correct.  

6.2. Confusion Matrix Analysis: 

The confusion matrix (Figure 2) shows that the majority 

of predictions are correct, with a few misclassifications. 

The matrix helps identify specific areas where the model 

may be improving. For example, there are no 

misclassifications between Class 2 and the other classes, 

which is a positive outcome. The model shows strong 

performance in identifying Class 2 and Class 3 but 

indicates some confusion between Class 1 and Class 3.  

6.3. ROC and AUC Analysis: 

The ROC curves (Figure 3) for each class show that the 

model performs exceptionally well, with AUC values 

close to 1 for all classes. This indicates a high true 

positive rate and a low false positive rate, suggesting that 

the model is robust and reliable across different 

thresholds. The ROC curves further confirm the model’s 

ability to distinguish between the different classes of 

brain tumors effectively.  

6.4. Model Robustness and Generalization: 

The high performance across various metrics indicates 

that the model generalizes well to unseen data. This 

robustness is crucial for clinical applications where the 

model must perform reliably on diverse patient data. The 

use of transfer learning with DenseNet121 and 

InceptionV2 architectures likely contributed to the 

model’s strong performance by leveraging pre-trained 

features that are well-suited for image classification 

tasks. 

 
Fig. 2: Confusion Matrix 

6.5. Clinical Implications: 

The high accuracy and reliability of the model suggest its 

potential utility in clinical settings. Accurate 

classification of brain tumors can aid in early diagnosis, 

treatment planning, and monitoring, ultimately 

improving patient outcomes. The model’s high precision 

and recall reduce the risk of misdiagnosis, ensuring that 

patients receive appropriate and timely medical 

interventions. 

 
Fig. 3: ROC Curve 

7. Conclusion  

In this study, we proposed a novel hybrid deep learning 

model that combines DenseNet121 and InceptionV2 

architectures for brain tumor classification. The model 

was evaluated using the Figshare Brain Tumor Dataset, 
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which includes MRI images of three types of brain 

tumors: glioma, meningioma, and pituitary tumors. Our 

model leverages the strengths of both DenseNet121 and 

InceptionV2, capturing both detailed and high-level 

features from MRI images. The dense connectivity of 

DenseNet121 facilitates feature reuse and gradient flow, 

while the multi-scale convolutions of InceptionV2 

capture crucial contextual information. The proposed 

hybrid model achieved an overall accuracy of 97% on the 

test set, with high precision, recall, and F1-scores for 

each tumor class. Class 2 (meningioma) achieved perfect 

scores across all metrics, indicating the model’s 

robustness in identifying this tumor type. Although Class 

1 (glioma) showed a slightly lower recall, the model’s 

overall performance across all classes was impressive. 

The high performance of our model across various 

metrics indicates its robustness and ability to generalize 

well to unseen data, which is crucial for clinical 

applications. While the results are promising, there is 

always room for improvement. Future work could focus 

on increasing the dataset size to enhance the model’s 

generalization further. Additionally, incorporating 

advanced data augmentation techniques and exploring 

other state-of-the-art architectures could yield even 

better performance. Fine-tuning hyperparameters and 

employing ensemble methods might also improve the 

model’s robustness and accuracy. Our hybrid deep 

learning model demonstrates high performance in 

classifying brain tumors, with significant potential for 

clinical application. The combination of DenseNet121 

and InceptionV2 architectures, along with transfer 

learning, provides a powerful tool for accurate and 

reliable brain tumor classification. The detailed analysis 

of metrics and results underscores the model’s 

effectiveness and points to avenues for future 

enhancement. 
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 مقالة بحثية 

الاستفادة   121 2تصنيف أورام الدماغ باستخدام نموذج التعلم العميق الهجين: وشبكة جوجل انسبشن اصدار

 من بنيات الشبكة العصبونية الكثيفة 

 *أنيس عبد الله شعفل علي

 .اليمن ،المعلومات، جامعة أبين، أبينقسم علوم الحاسوب، كلية الحاسوب وتقنية 

 aneesshafal@gmail.com البريد الالكتروني: ؛الباحث الممثلّ: أنيس عبد الله شعفل علي * 

 2024ديسمبر  31  / نشر في 2024ديسمبر  24 قبل في: / 2024 أكتوبر 15 استلم في:

 المُلخّص 

حده، مما يشكل تحديات كبيرة بسبب طبيعتها المعقدة وموقعها الحرج. التشخيص الدقيق والمبكر تمثل أورام المخ واحدة من أشد أشكال السرطان  

لقوة في أمر بالغ الأهمية للعلاج الفعال وتحسين نتائج المرضى. في هذه الدراسة، أقترح نموذجًا جديداً للتعلم العميق الهجين يجمع بين نقاط ا

( لتعزيز دقة تصنيف أورام المخ. InceptionV2)  2( وشبكة جوجل انسبشن الاصدارDenseNet121)  121بنيات الشبكة العصبونية الكثيفة

 T1صورة تصوير بالرنين المغناطيسي معززة بالتباين    3064التي تضم    Figshare Brain Tumorيتم استخدام مجموعة بيانات أورام المخ  

الدبقي والورم السحائي،    233من   المقترح. تتضمن مجموعة البيانات ثلاث فئات أولية من الأورام: الورم  النموذج  مريضًا، لتدريب وتقييم 

ة يز قووأورام الغدة النخامية. يتم تطبيق خطوات المعالجة المسبقة مثل التطبيع، وتغيير الحجم، وزيادة البيانات لضمان اتساق المعلومات وتعز

الكثيفة العصبونية  الشبكة  يسهل مكون  طبقات    (DenseNet121)  121النموذج.  بكفاءة من خلال  الميزات  استخدام  إعادة  الهجين  للنموذج 

، معلومات سياقية متعددة المقاييس عبر طبقات تلافيفية متوازية. يتيح  ( InceptionV2)  2الإصدار  - متصلة بكثافة، بينما يلتقط مكون انسيبشن  

المستوى، مما يؤدي إلى تحسين أداء التصنيف. يتم تقييم النموذج الهجين المقترح  هذا المزيج للنموذج الاستفادة من الميزات التفصيلية وعالية  

الضوء    باستخدام مقاييس معيارية، مما يدل على تحسينات كبيرة في الدقة والمتانة والتعميم مقارنة بنماذج الأبنية الفردية. تسلط هذه الدراسة

تقدم تصنيف أورام المخ، مما يوفر اتجاهًا واعداً للأبحاث المستقبلية الطبية والتطبيقات    على إمكانات نماذج التعلم العميق الهجين في تطور أو

 السريرية. 

 .تصنيف أورام المخ، نموذج التعلم العميق، الشبكة العصبونية الكثيفة الكلمات المفتاحية:
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