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Abstract 

In this study, we explore the generalization of Wely’s projective curvature tensor 𝑊𝑗𝑘ℎ
𝑖  satisfying a specific 

recurrence relation (3.1), which defines a generalized W-recurrent space, denoted as 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 . By 

investigating the conditions under which this tensor satisfies the generalized recurrence relations, we define 

and analyze the properties of generalized W-recurrent, birecurrent, and Ricci tensors in the context of second-

order covariant derivatives. We derive a series of equations that describe the behavior of these tensors, 

including the covariant derivative expressions and their relationships with scalar curvatures and deviation 

tensors. A key contribution is the proof of various theorems that relate the generalized recurrence conditions 

to torsion tensors and curvature properties. Specifically, we show that the Ricci tensor and associated tensors 

exhibit generalized birecurrent Finsler space behavior under certain conditions. The results further provide 

insights into the torsion and deviation tensors, highlighting their role in the overall curvature structure of 

Finsler spaces. These findings extend the theory of recurrent spaces, offering a comprehensive framework for 

understanding higher-order curvature phenomena in Finsler geometry. 

Keywords: Generalized Recurrent and Birecurrent Finsler Space, Covariant derivative, Weyl Tensor 𝑊𝑗𝑘ℎ
𝑖  , 

Cartan's Curvature, Torsion Tensor and Ricci Tensor. 
 

 

I. Introduction 

Finsler geometry, as an extension of Riemannian 

geometry, has become a vital tool in both pure and applied 

mathematics, with applications spanning physics, 

engineering, and other fields. The study of curvature 

tensors in Finsler spaces has been a focal point for 

researchers seeking to understand the geometrical 

structures that characterize these spaces. The foundational 

works of many scholars have shaped our understanding of 

curvature properties, particularly with respect to various 

generalized and recurrent structures in Finsler spaces. 

A key advancement in this area was made [1], who 

explored the w*-curvature tensor in the context of 

relativistic space-times, providing new insights into the 

behavior of curvature in spacetime. [2] furthered this study 

by introducing the curvature tensor for spacetime in 

general relativity, offering a more detailed look at the 

interaction between geometry and physics. These studies 

have significantly contributed to our understanding of 

curvature in spaces with non-constant curvature. In the 

realm of Finsler spaces, Al-Qashbari and collaborators 

have made substantial contributions to the study of 

recurrent structures and higher-order generalizations. [3] 

presented a study on recurrent Finsler structures defined 

by special curvature tensors, shedding light on their 

higher-order generalizations. Similarly, [4] examined 

generalized BK-recurrent Finsler spaces, extending the 

scope of previous research on these recurrent properties 

and highlighting their importance in understanding 

complex geometric structures. Additionally, the 

exploration of generalized birecurrent Finsler spaces by 

[5], [6] has provided a more profound comprehension of 

the geometric properties associated with mixed covariant 

derivatives in Cartan's sense. Further research on 

curvature tensors in specific Finsler spaces, such as the 
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studies of [7], [8], [9], [10] on second-order generalized 

curvature tensors, and [13] on higher-order recurrent 

Finsler spaces with Berwald's curvature tensor, has 

expanded the framework for understanding the complex 

interactions between curvature and geometric structures in 

higher-dimensional Finsler spaces. The systematic review 

by [14] on various special Finsler spaces has also 

contributed to this comprehensive body of knowledge, 

offering a valuable resource for researchers interested in 

the diversity of curvature-related properties in Finsler 

geometry. 

Previous research in the field of Finsler geometry has 

significantly contributed to the understanding of 

generalized recurrent spaces, curvature properties, and 

their applications. [12] explored certain generalized BK-

recurrent Finsler spaces, contributing to the deeper 

understanding of Finsler geometry through the study of 

their curvature tensors. In parallel, [15] focused on 

generalized birecurrent spaces, further enhancing the 

mathematical foundation of these structures. Pandey, 

Saxena, and [16] also contributed to the study of 

generalized H-recurrent spaces, exploring their geometric 

characteristics. [17], in his seminal work, provided a 

comprehensive overview of the differential geometry of 

Finsler spaces, laying the groundwork for subsequent 

studies in the field. Collectively, these studies have paved 

the way for further exploration of Finsler spaces, 

particularly in the context of recurrent spaces and 

curvature tensors.  

This paper aims to extend these studies by focusing on the 

generalized curvature tensors in Finsler spaces, 

particularly in relation to the recurrence properties and 

higher-order generalizations of these structures. By 

building upon the work of these key researchers, we seek 

to provide new insights into the nature of curvature and its 

implications for the classification and analysis of Finsler 

spaces. 

In the field of differential geometry, Finsler spaces 

represent an essential extension of Riemannian geometry, 

with applications in both physics and pure mathematics. 

This paper introduces and explores the generalized W-

recurrent space, a specific class of Finsler space, where the 

curvature tensor satisfies a novel condition, as defined by 

equation (3.1). The study of such generalized spaces is 

crucial for understanding the behavior of curvature in 

higher-dimensional geometries, particularly in spaces with 

non-constant curvature. 

This research derives several fundamental relationships, 

including the transvection of curvature tensors into higher-

dimensional spaces, the covariant derivatives of torsion 

and deviation tensors, and the resulting theorems that 

govern the behavior of these tensors in Finsler geometry. 

We specifically examine the generalized birecurrent 

property of curvature tensors, extending the scope of 

Finsler space studies and contributing new insights into 

the classification of such spaces. 

The key result of this work is the derivation of explicit 

conditions for the torsion and Ricci tensors, as well as the 

curvature relations (3.7) and (4.19), which provide deep 

connections between the curvature of the space and the 

underlying geometric structure. Furthermore, this paper 

demonstrates that under specific conditions, Finsler spaces 

with generalized birecurrent properties exhibit unique 

geometric characteristics, offering a new direction for 

future research in curvature and torsion analysis in Finsler 

geometry. 

Two vectors 𝑦𝑖  and 𝑦𝑖  meet the following conditions  

       a)     𝑦𝑖 = 𝑔𝑖𝑗 𝑦
𝑗   , 

       b)    𝑦𝑖  𝑦𝑖 = 𝐹2 , 

      c)     𝛿𝑗
𝑘 𝑦𝑗 = 𝑦𝑘  , 

       d)    𝑔𝑖𝑟 𝛿𝑗
𝑖 = 𝑔𝑟𝑗  , 

       e)    𝑔𝑗𝑘  𝛿𝑘
𝑖 = 𝑔𝑗𝑖 , 

       f)     �̇�𝑖  𝑦
𝑖 = 1  and 

       g)    �̇�𝑗 𝑦ℎ = 𝑔𝑗ℎ   .                                             (1.1) 

The quantities 𝑔𝑖𝑗 and 𝑔𝑖𝑗  are related by  

a)  𝑔𝑖𝑗  𝑔𝑗𝑘 = 𝛿𝑖
𝑘 =  { 

1  ,   𝑖𝑓   𝑖 = 𝑘   ,
0  ,   𝑖𝑓   𝑖 ≠ 𝑘   .

 

b)   𝑔𝑗𝑘
ℎ׀

= 0  and 

c)   𝑔
𝑖𝑗׀ℎ

 
= 0  .                                                  (1.2) 

Tensor 𝐶𝑖𝑗𝑘 is known as (h)hv-torsion tensor defined by  

 a)    𝐶𝑖𝑗𝑘 =
1

2
�̇�𝑖  𝑔𝑗𝑘 =  

1

4
�̇�𝑖�̇�𝑗�̇�𝑘 𝐹2  and 

 b)    𝐶𝑖𝑗𝑘 𝑦
𝑖 = 𝐶𝑖𝑗𝑘 𝑦

𝑗 = 𝐶𝑖𝑗𝑘 𝑦
𝑘 = 0  .              (1.3) 

The vector 𝑦𝑖  and metric function 𝐹 are vanished 

identically for Cartan’s covariant derivative. 

 a)   𝐹
ℎ׀

= 0  and 

 b)   𝑦𝑖
ℎ׀

= 0 .                                                     (1.4) 

The h-covariant derivative of second order for an 

arbitrary vector field with respect to 𝑥𝑘 and 𝑥𝑗, 

successively, we get  

       𝑋|𝑘|𝑗
𝑖 = 𝜕𝑗(𝑋|𝑘

𝑖 ) − (𝑋|𝑟
𝑖 ) Γ𝑘𝑗 

∗𝑟 + (𝑋|𝑘
𝑟 ) Γ𝑟𝑗 

∗𝑖  

         − (𝜕𝑗𝑋|𝑘
𝑖 ) Γ𝑗𝑠 

∗𝑖  𝑦 
𝑠  .                                              (1.5) 

In view (1.5) and by taking skew-symmetric part with 

respect to the indices j and k, we get the commutation 

formula for Cartan is covariant differentiation as follows: 

       𝑋|𝑘|𝑗
𝑖 − 𝑋|𝑗|𝑘

𝑖 = 𝑋 
𝑟𝐾𝑟𝑘𝑗

𝑖 − (𝜕𝑟𝑋 
𝑖) 𝐾𝑠𝑘𝑗

𝑖  𝑦 
𝑠   .       (1.6) 
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Where,   𝐾𝑗𝑘ℎ
𝑖 = 𝜕𝑗  Γ𝑘𝑟

∗𝑖 + (𝜕�̇�  Γ𝑟𝑗
∗𝑖)𝐺𝑘

𝑙 + Γ𝑚𝑗
∗𝑖  Γ𝑘𝑟

∗𝑚  

       −𝜕𝑘Γ𝑗𝑟
∗𝑖 −  (𝜕𝑙  ̇ Γ𝑟𝑘

∗𝑖 )𝐺𝑗
𝑙 − Γ𝑚𝑘 

∗𝑖 Γ𝑗𝑟
∗𝑚 .                     (1.7) 

The tensor 𝐾𝑗𝑘ℎ
𝑖  as defined above is called Cartan’s fourth 

curvature tensor, this tensor is positively homogeneous 

of degree zero in the directional arguments 
iy .  

Tensor 𝑊𝑗𝑘ℎ
𝑖  , torsion tensor 𝑊𝑗𝑘

𝑖  and deviation tensor 

𝑊𝑗
𝑖  are defined by:  

       𝑊𝑗𝑘ℎ
𝑖 = 𝐻𝑗𝑘ℎ

𝑖 +
2 𝛿𝑗

𝑖

(𝑛+1)
𝐻[ℎ𝑘] +

2 𝑦𝑖

(𝑛+1)
�̇�𝑗𝐻[𝑘ℎ] 

       + 
𝛿𝑘

𝑖

(𝑛2−1)
(𝑛 𝐻𝑗ℎ + 𝐻ℎ𝑗 + 𝑦𝑟�̇�𝑗𝐻ℎ𝑟) 

  −
𝛿ℎ

𝑖

(𝑛2−1)
(𝑛 𝐻𝑗𝑘 + 𝐻𝑘𝑗 + 𝑦𝑟�̇�𝑗𝐻𝑘𝑟)  ,                 (1.8) 

       𝑊𝑗𝑘
𝑖 = 𝐻𝑗𝑘

𝑖 +
𝑦𝑖

(𝑛+1)
𝐻[𝑗𝑘] 

       +2 { 
𝛿[ 𝑗

𝑖

(𝑛2−1)
(𝑛 𝐻𝑘] − 𝑦𝑟𝐻𝑘] 𝑟) }.                       (1.9) 

       𝑊𝑗
𝑖 = 𝐻𝑗

𝑖 − 𝐻 𝛿𝑗
𝑖 −

1

(𝑛+1)
( �̇�𝑟𝐻𝑗

𝑟 − �̇�𝑗𝐻) 𝑦𝑖,   (1.10) 

respectively.                         

The tensors 𝑊𝑗𝑘ℎ
𝑖  , and 𝑊𝑗𝑘

𝑖  satisfy the following 

identities 

  a)    𝑊𝑗𝑘ℎ
𝑖  𝑦𝑗 = 𝑊𝑘ℎ

𝑖   , 

  b)    𝑊𝑘ℎ
𝑖  𝑦𝑘 = 𝑊ℎ

𝑖  , 

  c)   𝑊𝑗𝑘𝑖 
𝑖 = 𝑊𝑗𝑘

    and 

 d)    𝑔𝑖𝑟 𝑊𝑗𝑘ℎ
𝑖 = 𝑊𝑟𝑗𝑘ℎ

   .                                   (1.11) 

Also, if we suppose that the tensor 𝑊𝑗
𝑖 and 𝑊𝑗𝑘

  satisfy 

the following identities  

 a)    𝑊𝑘
𝑖  𝑦𝑘 = 0 , 

  b)   𝑊𝑖
𝑖 = 0  , 

 c)    𝑔𝑖𝑟 𝑊𝑗
𝑖 =  𝑊𝑟𝑗

   , 

  d)    𝑔𝑗𝑘𝑊𝑗𝑘
 = 𝑊  and 

  e)    𝑊𝑗𝑘
  𝑦𝑘 = 0  .                                            (1.12) 

Cartan’s third curvature tensor  𝑅𝑗𝑘ℎ
𝑖  , Ricci tensor 𝑅𝑗𝑘 , 

𝐻𝑘ℎ
𝑖 , the vector 𝐻𝑘 and scalar curvature 𝐻 are defined as 

a)    𝑅𝑗𝑘ℎ
𝑖 = Γℎ𝑗𝑘

∗𝑖 + (Γ𝑙𝑗𝑘
∗𝑖 ) 𝐺ℎ

𝑙 + 𝐶𝑗𝑚
𝑖 (𝐺𝑘ℎ

𝑚 − 𝐺𝑘𝑙
𝑚 𝐺ℎ

𝑙 ) 

 +Γ𝑚𝑘 
∗𝑖 Γ𝑗ℎ

∗𝑚 −
𝑘

ℎ
  , 

b)  𝑅𝑗𝑘ℎ 
𝑖 𝑦𝑗 = 𝐻𝑘ℎ

𝑖   , 

c)  𝑅𝑗𝑘 𝑦
𝑗 = 𝐻𝑘  , 

d)  𝑅𝑗𝑘 𝑦𝑘 = 𝑅𝑗   , 

e)  𝑅𝑖
𝑖 = 𝑅 , 

f)  𝑔𝑖𝑟 𝑅𝑗𝑘ℎ
𝑖 = 𝑅𝑟𝑗𝑘ℎ

  , 

g)  𝑔𝑗𝑘𝑅𝑗𝑘
 = 𝑅 

   , 

h)   𝑔𝑗𝑘𝑅𝑗𝑘ℎ
𝑖 = 𝑅ℎ

𝑖   , 

i)  𝑅𝑗𝑘𝑖
𝑖 = 𝑅𝑗𝑘 , 

t)   𝐻𝑖 𝑦
𝑖 = 𝐻𝑖

𝑖 = (𝑛 − 1) 𝐻  , 

j)   𝐻𝑘ℎ 
𝑖 𝑦𝑘 = 𝐻ℎ

𝑖   and 

k)  𝐻𝑘𝑖 
𝑖 = 𝐻𝑘

  .                                                   (1.13) 

The 4th curvature tensor 𝐾𝑗𝑘ℎ
𝐼  , the Ricci tensor  Kjk , the 

vector 𝐾𝑘 , and the scalar curvature 𝐾 are defined as 

follows 

a)  𝐾𝑗𝑘ℎ 
𝑖 𝑦𝑗 = 𝐻𝑘ℎ

𝑖   , 

b)  𝐾𝑗𝑘 𝑦
𝑗 = 𝐻𝑘  , 

c)  𝐾𝑗𝑘  𝑦𝑘 = 𝐾𝑗  , 

d)   𝑔𝑗𝑘𝐾𝑗𝑘
 = 𝐾 

   , 

e)  𝐾𝑗𝑘𝑖
𝑖 = 𝐾𝑗𝑘   and 

f)   𝑔𝑗𝑘 𝐾𝑗𝑘ℎ
𝑖 = 𝐾ℎ

𝑖  .                                           (1.14) 

2. Preliminaries 

We introduced the generalized by Cartan’s covariant 

derivative for Wely’s projective curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

was given by (see [7]). 

𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) .              (2.1) 

A Finsler space 𝐹𝑛 which the curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

satisfies the condition (2.1) is called a generalized 𝑊|ℎ
 -

recurrent space and denoted by 𝐺 
 𝑊|ℎ

 − 𝑅𝐹𝑛.  

|m is called h-covariant derivative of with respect to 𝑥𝑚.  

Taking the h-covariant derivative of (2.1), with respect 

to  𝑥𝑙, and using (1.2c), we get  

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝜆𝑚|𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝜆𝑚𝑊𝑗𝑘ℎ|𝑙
𝑖  

                +𝜇𝑚|𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) . 

Using (2.1) in above equation, we get  

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = (𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙)𝑊𝑗𝑘ℎ

𝑖  

               +(𝜇𝑙 + 𝜇𝑚|𝑙)(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) .                 (2.2) 

The equation (2.2), can be written as  

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑊𝑗𝑘ℎ

𝑖  + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ).         (2.3) 

where 𝑎𝑚𝑙 =  𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙 and 𝑏𝑚𝑙 = µ𝑚|𝑙 + 𝜆𝑚µ𝑙  are 

non-zero covariant tensors field of second order, 

respectively.  
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A Finsler space 𝐹𝑛 which the curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

satisfies the condition (2.3) is called a generalized 𝑊|ℎ
 - 

birecurrent space and denoted by 𝐺𝑊|ℎ
 − 𝐵𝑅𝐹𝑛 .  

From (1.3b), we can write (2.1) by the follows form 

        𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

        + 𝛾𝑚(𝑊ℎ
𝑖𝐶𝑖𝑗𝑘𝑦𝑖 − 𝑊𝑘

𝑖𝐶𝑖𝑗ℎ𝑦𝑖) .                         (2.4) 

3. The Extension of Generalized 𝑾|𝒉
 – 

Birecurrent Finsler Space  

In this section, we introduce a new class of Finsler 

spaces, namely, generalized 𝑊|ℎ
 -birecurrent spaces. 

These spaces generalize the concept of birecurrence to a 

broader setting and exhibit interesting geometric 

properties. We investigate the curvature tensor of these 

spaces and establish several characterization theorems. 

Our work in this section we defined |𝑙|𝑚 is covariant 

derivative of second order. 

Using the conditions (1.3a), (1.1b), (1.1f), and (1.1g), in 

(2.4), we get 

𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

                +
1

4
𝛾𝑚(𝑊𝑘

𝑖  𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 ) .                      (3.1) 

A Finsler space 𝐹𝑛 which the curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

satisfies the condition (3.1) is called the generalization 

generalized 𝑊|ℎ
 - recurrent space and denoted by 

𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝑅𝐹𝑛 . 

Taking the h-covariant derivative of (3.1), with respect 

to 𝑥𝑙, we get  

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝜆𝑚|𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝜆𝑚𝑊𝑗𝑘ℎ|𝑙
𝑖

+ µ𝑚|𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ)

+ µ𝑚(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ )|𝑙
 

                             +
1

4
𝛾𝑚|𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘) 

+
1

4
𝛾𝑚(𝑊𝑘

𝑖  𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 )|𝑙

.        (3.2) 

Using (1.2c) and (3.1) in (3.2), we get  

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝜆𝑚|𝑙𝑊𝑗𝑘ℎ

𝑖

+ 𝜆𝑚 (𝜆𝑙𝑊𝑗𝑘ℎ
𝑖 + 𝜇𝑙(𝛿ℎ

𝑖 𝑔𝑗𝑘 − 𝛿𝑘
𝑖 𝑔𝑗ℎ)

+
1

4
𝛾𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 )) 

+ µ𝑚|𝑙(𝛿𝑘
𝑖  𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘 ) 

 +
1

4
𝛾𝑚|𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘) 

 +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
 . 

Or 

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = (𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙 )W𝑗𝑘ℎ

𝑖  

+(𝜆𝑚µ𝑙 + µ𝑚|𝑙)(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

    +
1

4
(𝜆𝑚𝛾𝑙 + 𝛾𝑚|𝑙)(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘) 

+
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
.                   (3.3) 

The equation (3.3), can be written as  

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

 +
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘) 

             +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
.             (3.4) 

where 𝑎𝑚𝑙 = 𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙 , 𝑏𝑚𝑙 = µ𝑚|𝑙 + 𝜆𝑚µ𝑙  and 

𝑐𝑚𝑙 = (𝜆𝑚𝛾𝑙 + 𝛾𝑚|𝑙) are non-zero covariant tensors field 

of second order, respectively.  

Definition 3.1. In Finsler space, which the Wely’s 

projective curvature tensor 𝑊𝑗𝑘ℎ
𝑖  satisfies the condition 

(3.4) is called the generalization generalized.  

𝑊|ℎ
 - Birecurrent specs and the tensor will be called a 

generalization generalized h-Birecurrent specs. These 

space and tensor denote them briefly by 𝐺 
2𝑛𝑑  𝑊|ℎ

 −

𝐵𝑅𝐹𝑛 and 𝐺 
2𝑛𝑑  ℎ − 𝐵𝑅, respectively. 

Result 3.1. All a 𝐺 
2𝑛𝑑 𝑊|ℎ

 -recurrent space is a 

𝐺 
2𝑛𝑑  𝑊|ℎ

 - Birecurrent specs. 

Transvecting condition to a higher dimensional space 

(3.4) by 𝑦𝑗, using (1.1a), (1.3b), (1.5b) and (1.11a), we 

get  

𝑊𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝑊𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ) 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ) 

+
1

4
𝛾𝑚(𝑊ℎ

𝑖  𝑦𝑘 − 𝑊𝑘
𝑖  𝑦ℎ)

|𝑙
 .             (3.5) 

Again, transvecting condition to a higher dimensional 

space (3.5) by  𝑦𝑘 , using (1.1b), (1.2a), (1.2c), (1.4b), 

(1.12a) and (1.11b), we get 

𝑊ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝑊ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝐹 

2 − 𝑦 
𝑖𝑦ℎ) 

+
1

4
𝑐𝑚𝑙𝑊ℎ

𝑖𝐹 
2 +

1

4
𝛾𝑚 (𝑊ℎ

𝑖𝐹 
2)

|𝑙
.                 (3.6) 

Therefore, the proof of theorem is completed, we 

can say 

Theorem 3.1. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛, the torsion tensor 

𝑊𝑘ℎ
𝑖  and deviation tensor 𝑊ℎ

𝑖  are given by equations (3.5) 

and (3.6). 

Contracting the indices space by summing over 𝑖 and ℎ in 

the conditions (3.4) and using (1.1d), (1.2a), (1.11c), 

(1.12b) and (1.12c), we get 
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𝑊𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝑊𝑗𝑘

 + 𝑏𝑚𝑙(𝑛 − 1)𝑔𝑗𝑘 

−
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 −
1

4
𝛾𝑚𝑊𝑗𝑘|𝑙

   .                          (3.7) 

Again, transvecting condition to a higher dimensional 

space (3.4) by 𝑔𝑖𝑟
 , using (1.1d),(1.2c), (1.11d) and 

(1.12c) we get  

𝑊𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝑊𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟ℎ 𝑔𝑗𝑘 − 𝑔𝑟𝑘 𝑔𝑗ℎ)  

 +
1

4
𝑐𝑚𝑙(𝑊𝑟ℎ 

 𝑔𝑗𝑘 − 𝑊𝑟𝑘 
 𝑔𝑗ℎ) 

+
1

4
𝛾𝑚(𝑊𝑟ℎ

 𝑔𝑗𝑘 − 𝑊𝑟𝑘
 𝑔𝑗ℎ)

|𝑙
 .             (3.8) 

Therefore, the proof of theorem is completed, we 

can say 

Theorem 3.2. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , the Ricci 𝑊𝑗𝑘 and 

the associate tensor 𝑊𝑟𝑗𝑘ℎ
  are generalized birecurrent 

Finsler space given by the equations (3.7) and (3.8). 

Transvecting (3.7) by 𝑔𝑗𝑘, and using (1.1e) and (1.12d), 

we get  

𝑊|𝑚|𝑙
 = 𝑎𝑚𝑙𝑊 

 + 𝑏𝑚𝑙(𝑛 − 1) 

−
1

4
 𝑐𝑚𝑙𝑊 

 −
1

4
 𝛾𝑚𝑊|𝑙

  .                          (3.9) 

From conditions (3.9), we show that the curvature scalar 

𝑊 cannot equal to zero because if the vanishing of W 

would imply 𝑎𝑚𝑙 = 0 and 𝑏𝑚𝑙 = 0, that is a 

contradiction. 

Therefore, the proof of theorem is completed, we 

can say 

Theorem 3.3. In  𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , the scalar 𝑊 in 

equations (3.9) is non-vanishing. 

4. Exploring the Relationship Between 

Weyl’s Curvature Tensor and Cartan’s 

Third Curvature Tensor in Finsler 

Geometry 

Finsler geometry, which extends the concepts of 

Riemannian geometry, offers a robust framework for 

modeling a diverse range of physical phenomena. Within 

Finsler spaces, the curvature properties of the space are 

described by various curvature tensors, with Weyl’s and 

Cartan’s third curvature tensors being of particular 

significance. While the individual geometric and 

physical implications of these tensors have been widely 

studied, the connection between them has not been fully 

explored and remains an area of active research. 

This paper aims to examine the relationship between 

Weyl’s curvature tensor and Cartan’s third curvature 

tensor within the context of Finsler spaces. By analyzing 

their algebraic and geometric properties, we aim to 

derive new identities and inequalities that connect these 

two fundamental tensors. The results of this study are 

expected to enhance our understanding of the curvature 

structure of Finsler spaces and offer new insights into 

their potential applications, particularly in gravitational 

theories and cosmology. 

Some properties of 𝑊𝑗𝑘ℎ
𝑖  curvature tensor was proposed 

by Ahsan and Ali [3],[4] in (2014). For (𝑛 = 4) a 

Riemannian space, it is known that Cartan’s third 

curvature tensor  𝑅𝑗𝑘ℎ
𝑖  and Wely’s projective curvature 

tensor  𝑊𝑗𝑘ℎ
𝑖  are connected by the formula  

𝑊𝑗𝑘ℎ
𝑖 = 𝑅𝑗𝑘ℎ

𝑖 +
1

3
( 𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 ) .                       (4.1) 

Taking the covariant derivative of (4.1), with respect to 

𝑥𝑚 and 𝑥𝑙 in the sense of Cartan and using (1.2c), we get 

𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑅𝑗𝑘ℎ|𝑚|𝑙

𝑖 +
1

3
(𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
 .      (4.2) 

Using (3.4) and (4.1) in (4.2), we get 

 𝑅𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  (𝑅𝑗𝑘ℎ

𝑖 +
1

3
(𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 −  𝑔𝑗𝑘 𝑅ℎ

𝑖 ) ) 

+ 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

 + 
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
 

 +
1

3
(𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
. 

 Or  

𝑅𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑅𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

 +
1

3
𝑎𝑚𝑙( 𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 ) 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

 +
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
 

+
1

3
( 𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
 .             (4.3) 

This shows that 

𝑅𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑅𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 − 𝛿𝑘

𝑖 𝑔𝑗ℎ) 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

+
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
 .              (4.4) 

If and only if 

( 𝛿𝑘 
𝑖 𝑅𝑗ℎ 

 −  𝑔𝑗𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙

 
 

                           = 𝑎𝑚𝑙( 𝛿𝑘 
𝑖 𝑅𝑗ℎ 

 − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 ).            (4.5) 

Therefore, the proof of theorem is completed, we 

can say 

Theorem 4.1. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , Cartan’s third 

curvature tensor 𝑅𝑗𝑘ℎ
𝑖  is a generalized birecurrent Finsler 

space if and only if the tensor (𝛿𝑘 
𝑖 𝑅𝑗ℎ 

 − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 ) is a 

generalized birecurrent Finsler space. 
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Transvecting condition (4.3) by 𝑦𝑗, using (1.1a), (1.4b), 

(1.13b) and (1.13c), we get 

𝐻𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝐻𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ ) 

 +
1

3
𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝐻ℎ 
 − 𝑦𝑘 𝑅ℎ 

𝑖 ) 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ ) 

 +
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ )|𝑙

 

 +
1

3
(𝛿𝑘 

𝑖 𝐻ℎ 
 − 𝑦𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
 .                (4.6) 

This shows that  

𝐻𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝐻𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ ) 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ ) 

+ 
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑦𝑘 − 𝑊𝑘
𝑖𝑦ℎ )|𝑙

 .              (4.7) 

If and only if 

(𝛿𝑘 
𝑖 𝐻ℎ 

 −  𝑦𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝐻ℎ 
 − 𝑦𝑘 𝑅ℎ 

𝑖 ).     (4.8) 

The proof of theorem is completed, we conclude 

Theorem 4.2. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , the covariant 

derivative of the second orders for the torsion tensor 

𝐻𝑘ℎ
𝑖  is a generalized birecurrent Finsler space if and only 

if (4.8), holds good. 

Transvecting (4.6) by 𝑦𝑘, using (1.1b), (1.1c), (1.4a), 

(1.4b), (1.12a) and (1.13j), we get 

𝐻ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐻ℎ

𝑖 + 𝑏𝑚𝑙(𝑦 
𝑖  𝑦ℎ − 𝛿ℎ

𝑖  𝐹 
2) 

 +
1

4
𝑐𝑚𝑙𝑊ℎ

𝑖𝐹 
2 +

1

4
𝛾𝑚𝑊ℎ|𝑙

𝑖  𝐹 
2 

 +
1

3
𝑎𝑚𝑙( 𝑦 

𝑖𝐻ℎ 
 − 𝐹 

2𝑅ℎ 
𝑖 ) 

+
1

3
 ( 𝑦 

𝑖𝐻ℎ 
 − 𝐹 

2 𝑅ℎ 
𝑖 )

|𝑚|𝑙

 
 .                (4.9) 

This shows that 

𝐻ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐻ℎ

𝑖 + 𝑏𝑚𝑙( 𝑦 
𝑖  𝑦ℎ − 𝛿ℎ

𝑖  𝐹 
2) +

1

4
𝑐𝑚𝑙  𝑊ℎ 

𝑖 𝐹 
2 +

1

4
𝛾𝑚 𝑊ℎ|𝑙

𝑖  𝐹 
2 .            (4.10) 

If and only if 

 (𝑦 
𝑖𝐻ℎ 

 − 𝐹 
2 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑦 

𝑖𝐻ℎ
 − 𝐹 

2𝑅ℎ 
𝑖 ).     (4.11) 

Therefore, the proof of theorem is completed, we 

can say 

Theorem 4.3. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , the covariant 

derivative of the second orders for the deviation 

tensor 𝐻ℎ
𝑖  is a generalized birecurrent Finsler space if and 

only if (4.11), holds good.  

Contracting the indices 𝑖 and ℎ in the equations (4.6) and 

(4.9), respectively and using (1.2a), (1.1a), (1.1b), (1.4a), 

(1.13k), (1.13t), and (1.12b), we get 

 𝐻𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐻𝑘

 + (1 − 𝑛) 𝑏𝑚𝑙  𝑦𝑘  

 +
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑦𝑖 ) +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑦𝑖 )|𝑙
 

                    +
1

3
𝑎𝑚𝑙(𝐻𝑘

 − 𝑦𝑘 𝑅) 

                     +
1

3
(𝐻𝑘 

 −  𝑦𝑘 𝑅 
 )|𝑚|𝑙

  .                        (4.12) 

This shows that 

𝐻𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐻𝑘

 + (1 − 𝑛) 𝑏𝑚𝑙  𝑦𝑘 +
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑦𝑖 ) 

 +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑦𝑖 )|𝑙
 .                                 (4.13) 

If and only if 

(𝐻𝑘 
 − 𝑦𝑘 𝑅 

 )|𝑚|𝑙
 = 𝑎𝑚𝑙( 𝐻𝑘 

 −  𝑦𝑘 𝑅 
 ) .      (4.14) 

And 

 𝐻|𝑚|𝑙 
 = 𝑎𝑚𝑙𝐻 + (1 − 𝑛)𝑏𝑚𝑙  𝐹 

2 +
1

3
 (𝐻 − 𝐹 

2𝑅)|𝑚|𝑙
  

                     +
1

3
𝑎𝑚𝑙(𝐻 

 − 𝐹 
2𝑅 

 ) .                           

(4.15) 

This shows that 

𝐻|𝑚|𝑙 
 = 𝑎𝑚𝑙𝐻 + (1 − 𝑛)𝑏𝑚𝑙  𝐹 

2 .                           (4.16) 

If and only if 

(𝐻 − 𝐹 
2𝑅 

 )|𝑚|𝑙
 = 𝑎𝑚𝑙(𝐻 − 𝐹 

2𝑅 
 ) .                       (4.17) 

Therefore, the proof of theorem is completed, we 

can say 

Theorem 4.4. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , vector 𝐻𝑘 and 

scalar 𝐻 are given in (4.13) and (3.16) if and only if the 

conditions (4.14) and (3.17) are holds good, respectively. 

Contracting the indices 𝑖 and ℎ in the equations (4.3) and 

using (1.1d), (1.1b), (1.13i), (1.13e), (1.12d) and (1.12b), 

we get  

 𝑅𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅𝑗𝑘

 + (1 − 𝑛) 𝑏𝑚𝑙  𝑔𝑗𝑘 

    +
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 +  
1

4
𝛾𝑚W𝑗𝑘|𝑙

  

  +
1

3
( 𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 )

|𝑚|𝑙

 
 

 +
1

3
𝑎𝑚𝑙( 𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 ) .              (4.18) 

This shows that 

𝑅𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅𝑗𝑘

 + (1 − 𝑛)𝑏𝑚𝑙  𝑔𝑗𝑘 

                            +
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 +
1

4
𝛾𝑚W𝑗𝑘|𝑙

  .            (4.19) 

If and only if  

 (𝑅𝑗𝑘
 − 𝑔𝑗𝑘 𝑅 

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑅𝑗𝑘

 – 𝑔𝑗𝑘 𝑅 
 ) .               (4.20) 

In conclusion the proof of theorem is completed, we 

get 
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Theorem 4.5. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , R-Ricci tensor 𝑅𝑗𝑘 

is given in (4.19), if and only if the condition (4.20) is 

holds good.  

Transvecting (4.18) by 𝑦𝑘, using  (1.1a), (1.1c), (1.4b), 

(1.12e) and (1.13d), we get 

        𝑅𝑗|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅𝑗

 + (1 − 𝑛)𝑏𝑚𝑙  𝑦𝑗  

        +
1

3
(𝑅𝑗 

 − 𝑦𝑗 𝑅 
 )

|𝑚|𝑙

 
+

1

3
𝑎𝑚𝑙(𝑅𝑗 

 − 𝑦𝑗 𝑅 
 ).      (4.21) 

This shows that 

       𝑅𝑗|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅𝑗

 + (1 − 𝑛) 𝑏𝑚𝑙  𝑦𝑗  .                   (4.22) 

If and only if 

        (𝑅𝑗 
 − 𝑦𝑗 𝑅 

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑅𝑗

 – 𝑦𝑗 𝑅 
 ) .               (4.23) 

Transvecting (4.3) and (4.18) by 𝑔𝑗𝑘, respectively using 

(1.2a), (1.2b), (1.12d), (1.13g), and (1.13h), we get 

       𝑅ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙 𝑅ℎ

𝑖 + (𝑛 − 1)𝑏𝑚𝑙 𝛿ℎ
𝑖  

        +
1

4
(𝑛 − 1)𝑐𝑚𝑙 𝑊ℎ

𝑖 +
1

4
(𝑛 − 1) 𝛾𝑚 𝑊ℎ|𝑙

𝑖  

−
1

3
(𝑛 − 1)(𝑅ℎ

𝑖 )
|𝑚|𝑙

 
−

1

3
(𝑛 − 1)𝑎𝑚𝑙 𝑅ℎ

𝑖   .       (4.24) 

This shows that 

       𝑅ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙  𝑅ℎ

𝑖 + (𝑛 − 1)𝑏𝑚𝑙𝛿ℎ
𝑖  

       +
1

4
(𝑛 − 1)𝑐𝑚𝑙𝑊ℎ

𝑖 +
1

4
(𝑛 − 1)𝛾𝑚 𝑊ℎ|𝑙

𝑖  .          (4.25) 

If and only if  

(𝑅ℎ
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙𝑅ℎ

𝑖   .                                          (4.26) 

And   𝑅|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅 

 + (1 − 𝑛)𝑛 𝑏𝑚𝑙 +
1

4
𝑐𝑚𝑙𝑊 

            +
1

4
𝛾𝑚𝑊|𝑙 +

1

3
(1 − 𝑛)(𝑅 

 )|𝑚|𝑙
  

            +
1

3
(1 − 𝑛) 𝑎𝑚𝑙 𝑅 .                                     (4.27)                                     

This shows that 

𝑅|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅 

 + (1 − 𝑛)𝑛 𝑏𝑚𝑙  

            +
1

4
𝑐𝑚𝑙𝑊 +

1

4
𝛾𝑚𝑊|𝑙  .                                  (4.28) 

If and only if  

     (𝑅 
 )|𝑚|𝑙

 = 𝑎𝑚𝑙𝑅 
 .                                          (4.29) 

In conclusion the proof of theorem is completed, we 

get 

Theorem 4.6. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , vector 𝑅𝑗 , the 

projective deviation tensor 𝑅ℎ
𝑖  and scalar 𝑅 are given in 

(4.22), (4.25) and (4.28) if and only if the conditions 

(4.23), (4.26) and (4.29) are holds good, respectively. 

Transvecting (4.3) by 𝑔𝑖𝑟 , using (1.1d), (1.2c), (1.12c) 

and (1.13f), we get 

𝑅𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟𝑘  𝑔𝑗ℎ − 𝑔𝑟ℎ 𝑔𝑗𝑘) 

 +
1

3
( 𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ
 )

|𝑚|𝑙

 
 

 +
1

3
𝑎𝑚𝑙(𝑔𝑟𝑘 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅𝑟ℎ
 ) 

 +
1

4
𝑐𝑚𝑙(𝑊𝑟𝑘 

 𝑔𝑗ℎ − 𝑊𝑟ℎ 
 𝑔𝑗𝑘) 

+
1

4
𝛾𝑚(𝑊𝑟𝑘 

 𝑔𝑗ℎ − 𝑊𝑟ℎ 
 𝑔𝑗𝑘)

 |𝑙

 
 .          (4.30) 

This shows that 

          𝑅𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝑅𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟𝑘  𝑔𝑗ℎ − 𝑔𝑟ℎ 𝑔𝑗𝑘) 

 +
1

4
𝑐𝑚𝑙(𝑊𝑟𝑘

  𝑔𝑗ℎ − 𝑊𝑟ℎ
  𝑔𝑗𝑘 ) 

     +
1

4
𝛾𝑚(𝑊𝑟𝑘

  𝑔𝑗ℎ − 𝑊𝑟ℎ
  𝑔𝑗𝑘 ) |𝑙

 
 .         (4.31)  

If and only if  

           (𝑔𝑟𝑘 𝑅𝑗ℎ
 − 𝑔𝑗𝑘 𝑅𝑟ℎ

 )
|𝑚|𝑙

 
 

           = 𝑎𝑚𝑙( 𝑔𝑟𝑘 𝑅𝑗ℎ
 − 𝑔𝑗𝑘 𝑅𝑟ℎ

 ). (4.32) 

Thus, the proof of theorem is completed, we get 

Theorem 4.7. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , associate tensor 

𝑅𝑟𝑗𝑘ℎ ( Cartan’s 3th curvature tensor 𝑅𝑗𝑘ℎ
𝑖  ) is a 

generalized birecurrent Finsler space if and only if the 

condition (4.32), holds good. 

It is known that Cartan’s 3th curvature tensor 𝑅𝑗𝑘ℎ
𝑖  and 

Cartan’s 4th curvature tensor 𝐾𝑗𝑘ℎ
𝑖  are connected by the 

formula [17]  

       𝑅𝑗𝑘ℎ
𝑖 = K𝑗𝑘ℎ

𝑖 + 𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
.                                   (4.33) 

Taking the covariant derivative of (4.33), with respcet to 

𝑥𝑚 and 𝑥𝑙 in the sence of Cartan we get 

       𝑅𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝐾𝑗𝑘ℎ|𝑚|𝑙

𝑖 + (𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
 )

|𝑚|𝑙

 
 .             (4.34) 

Using (4.3) and (4.33) in (4.34) we get  

𝐾𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐾𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿𝑘
𝑖  𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘 ) 

                         −(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
)

|𝑚|𝑙

 
+ 𝑎𝑚𝑙  𝐶𝑗𝑝

𝑖  𝐻𝑘ℎ
𝑝

 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ 

𝑖 𝑔𝑗𝑘 − 𝑊𝑘
𝑖  𝑔𝑗ℎ) 

   + 
1

4
𝛾𝑚(𝑊ℎ

𝑖  𝑔𝑗𝑘 − 𝑊𝑘 
𝑖 𝑔𝑗ℎ)

|𝑙
 

 +
1

3
(𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

 
 

                         +
1

3
𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝑅𝑗ℎ 
 − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 ) .           (4.35) 

This shows that 

𝐾𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐾𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿𝑘
𝑖  𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘 ) 

 +
1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ) 

+ 
1

4
𝛾𝑚(𝑊ℎ

𝑖𝑔𝑗𝑘 − 𝑊𝑘
𝑖𝑔𝑗ℎ)

|𝑙
 .           (4.36) 

If and only if 
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(𝛿𝑘 
𝑖 𝑅𝑗ℎ 

 − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙

 
 

          = 𝑎𝑚𝑙( 𝛿𝑘 
𝑖 𝑅𝑗ℎ 

 − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 ).                           (4.37) 

and  

(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  𝐶𝑗𝑝

𝑖  𝐻𝑘ℎ
𝑝

 .                                (4.38) 

Thus, the proof of theorem is completed, we get 

Theorem 4.8. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , Cartan’s 4th 

curvature tensor 𝐾𝑗𝑘ℎ
𝑖  is a generalized birecurrent Finsler 

space if and only if the tensors (𝛿𝑘 
𝑖 𝑅𝑗ℎ

 − 𝑔𝑗𝑘 𝑅ℎ
𝑖 ) and 

(𝐶𝑗𝑝
𝑖 𝐻𝑘ℎ

𝑝
) are a generalized birecurrent Finsler space. 

Contracting the indices 𝑖 and ℎ in the equations (4.35) 

and using (1.1d), (1.1b), (1.13e), (1.14e), (1.12c) and 

(1.12b), we get  

       𝐾𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐾𝑗𝑘

 + (1 − 𝑛) 𝑏𝑚𝑙𝑔𝑗𝑘 +
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

  

 +
1

4
𝛾𝑚𝑊𝑗𝑘|𝑙

 − (𝐶𝑗𝑝
𝑖  𝐻𝑘𝑖

𝑝
 )

|𝑚|𝑙

 
 

+𝑎𝑚𝑙  𝐶𝑗𝑝
𝑖  𝐻𝑘𝑖

𝑝
+

1

3
(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 )

|𝑚|𝑙

 
 

+
1

3
𝑎𝑚𝑙(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅) .                            (4.39) 

This shows that 

         𝐾𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐾𝑗𝑘

 + (1 − 𝑛)𝑏𝑚𝑙  𝑔𝑗𝑘 

+
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 +
1

4
𝛾𝑚𝑊𝑗𝑘|𝑙 

  .                     (4.40) 

If and only if 

     (𝑅𝑗𝑘
 − 𝑔𝑗𝑘 𝑅 

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙(𝑅𝑗𝑘

 − 𝑔𝑗𝑘 𝑅 
 ) .          (4.41) 

And  (𝐶𝑗𝑝
𝑖  𝐻𝑘𝑖

𝑝
 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙  𝐶𝑗𝑝

𝑖  𝐻𝑘ℎ
𝑝

 .                       (4.42) 

Transvecting (4.39) by 𝑦𝑘, using (1.1a), (1.1c), (1.4b), 

(1.12a), (1.12e), (1.14c) and (1.13d), we get 

𝐾𝑗|𝑚|𝑙
 = 𝑎𝑚𝑙𝐾𝑗

 + (1 − 𝑛)𝑏𝑚𝑙  𝑦𝑗 +
1

3
(𝑅𝑗

 − 𝑦𝑗 𝑅 
 )

|𝑚|𝑙

 
 

 +
1

3
𝑎𝑚𝑙( 𝑅𝑗 

 − 𝑦𝑗 𝑅 
 ) − (𝐶𝑗𝑝

𝑖  𝐻𝑖
𝑝

)
|𝑚|𝑙

 
 

+𝑎𝑚𝑙  𝐶𝑗𝑝
𝑖  𝐻𝑖

𝑝
 .                                          (4.43) 

This shows that 

𝐾𝑗|𝑚|𝑙
 = 𝑎𝑚𝑙𝐾𝑗

 + (1 − 𝑛) 𝑏𝑚𝑙𝑦𝑗  .                          (4.44) 

If and only if 

(𝑅𝑗 
 − 𝑦𝑗 𝑅 

 )
|𝑚|𝑙

 
= 𝑎𝑚𝑙( 𝑅𝑗

 − 𝑦𝑗 𝑅 
 ) .                     (4.45) 

and  

(𝐶𝑗𝑝
𝑖  𝐻𝑖

𝑝
)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  𝐶𝑗𝑝

𝑖  𝐻𝑖
𝑝

 .                                   (4.46) 

Thus, the proof of theorem is completed, we get 

Theorem 4.9. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , K−Ricci tensor 𝐾𝑗𝑘 

and curvature vector 𝐾𝑗
  is given in (4.40) and (4.44), if 

and only if the conditions (4.41), (4.42), (4.45) and (4.46) 

are holds good, respectively.  

Transvecting (4.35) and (4.39) by 𝑔𝑗𝑘, respectively using 

the equations (1.2a), (1.2b), (1.12d), (1.14d), and (1.14f), 

we get 

𝐾ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐾ℎ

𝑖 + (𝑛 − 1)𝑏𝑚𝑙  𝛿ℎ
𝑖 +

1

4
(𝑛 − 1)𝑐𝑚𝑙  𝑊ℎ

𝑖   

   +
1

4
(𝑛 − 1)𝛾𝑚 𝑊ℎ|𝑙

𝑖 +
1

3
 (1 − 𝑛)(𝑅ℎ

𝑖 )
|𝑚|𝑙

 
 

 +
1

3
(1 − 𝑛)𝑎𝑚𝑙 𝑅ℎ

𝑖 − 𝑔𝑗𝑘(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
 )

|𝑚|𝑙

 
 

+𝑎𝑚𝑙𝑔𝑗𝑘(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
) .                                   (4.47) 

This shows that 

 𝐾ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐾ℎ

𝑖 + (𝑛 − 1)𝑏𝑚𝑙 𝛿ℎ
𝑖 +

1

4
(𝑛 − 1) 𝑐𝑚𝑙 𝑊ℎ

𝑖   

+
1

4
(𝑛 − 1) 𝛾𝑚 𝑊ℎ|𝑙

𝑖  .                             (4.48) 

If and only if 

(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  𝐶𝑗𝑝

𝑖  𝐻𝑘ℎ
𝑝

  ,  where 𝑔𝑗𝑘 ≠ 0 .   (4.49)  

And 

 (𝑅ℎ
𝑖 )

|𝑚|𝑙

 
= 𝑎𝑚𝑙  𝑅ℎ

𝑖  .                                               (4.50) 

Also,  

 𝐾|𝑚|𝑙
 = 𝑎𝑚𝑙𝐾 + (1 − 𝑛)𝑛 𝑏𝑚𝑙  +

1

4
𝑐𝑚𝑙𝑊 

              +
1

4
𝛾𝑚𝑊|𝑙 +

1

3
(1 − 𝑛)(𝑅)|𝑚|𝑙

  

              +
1

3
(1 − 𝑛)𝑎𝑚𝑙𝑅 

 − 𝑔𝑗𝑘(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
)

|𝑚|𝑙

 
 

+𝑎𝑚𝑙  𝑔𝑗𝑘(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
)  .                                (4.51) 

This shows that 

           𝐾|𝑚|𝑙
 = 𝑎𝑚𝑙𝐾 + (1 − 𝑛)𝑛 𝑏𝑚𝑙  

      +
1

4
𝑐𝑚𝑙𝑊 +

1

4
𝛾𝑚𝑊|𝑙  .                                        (4.52) 

If and only if  

(𝐶𝑗𝑝
𝑖  𝐻𝑘ℎ

𝑝
)

|𝑚|𝑙

 
= 𝑎𝑚𝑙  (𝐶𝑗𝑝

𝑖  𝐻𝑘ℎ
𝑝

 ) , where 𝑔𝑗𝑘 ≠ 0 , (4.53) 

And  (𝑅 
 )|𝑚|𝑙

 = 𝑎𝑚𝑙𝑅  . 
                                           (4.54) 

Thus, the proof of theorem is completed, we get 

Theorem 4.10. In 𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 , the projective 

deviation tensor 𝐾ℎ
𝑖  and scalar 𝐾 are given in (4.48) and 

(4.52) if and only if the conditions (4.49), (4.50), (4.53) 

and (4.54) are holds good, respectively. 

Conclusions  

In this paper, we have extensively studied the generalized 

𝑊|ℎ
  -recurrent Finsler space, denoted by 𝐺 

2𝑛𝑑 𝑊|ℎ
 −

𝐵𝑅𝐹𝑛 , and its associated curvature and torsion tensors. 

Our analysis has led to the formulation of various 
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conditions and theorems that describe the behavior of 

these tensors under specific transformations. We derived 

the essential equations governing the covariant 

derivatives of the Wely's projective curvature tensor in 

the context of higher-dimensional spaces, illustrating the 

non-trivial interactions between the curvature and torsion 

tensors. Specifically, we showed that the space 

𝐺 
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 exhibits generalized birecurrent 

behavior, a property that links the torsion and deviation 

tensors in a consistent mathematical framework. 

Additionally, we demonstrated that the Ricci tensor, the 

deviation tensor, and the torsion tensor exhibit specific 

conditions under which they maintain their generalized 

birecurrent Finsler space characteristics. Our results also 

clarify how these tensors transform when subjected to 

higher-dimensional transvection conditions, leading to 

the establishment of key relationships and identities 

between them. 

The results presented in this paper are significant for 

advancing the understanding of generalized Finsler 

spaces, particularly those characterized by recurrent or 

birecurrent properties. The derived conditions offer 

valuable insights for future research in geometric 

structures and their applications in various fields, such as 

differential geometry and theoretical physics. 

Moreover, the theorems established, particularly 

Theorems 3.1, 3.2, 4.1, and 4.5, provide a comprehensive 

framework for studying the curvature and torsion tensors 

in generalized Finsler spaces. These findings can 

contribute to the development of more sophisticated 

models for geometric objects in higher-dimensional 

spaces, with potential applications in areas such as 

general relativity and cosmology. 

Future work should focus on further exploring the 

implications of these results in practical contexts, 

including their relationship with other geometric 

structures and their potential role in the study of 

spacetime models. Additionally, investigating the 

stability of these generalized Finsler spaces under 

various transformations could provide further insights 

into the underlying geometric properties. 
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 مقالة بحثية 

ثنائي  ، احادي الاشتقاق-W تعميم موتر انحناء وِليّ الإسقاطي في فضاءات فينسلر: دراسة حول موترات الـ

 ، وموترات ريتشي الاشتقاق

 1السلالفهمي احمد مثنى  و ،*،1،2عادل محمد علي القشبري

 جامعة عدن، عدن، اليمن ، عدن -التربية ، كلية الرياضياتقسم  1
 ، عدن، اليمن جامعة العلوم والتكنولوجيا، الطبية الحيوية، كلية الهندسة والحاسبات قسم الهندسة 2

 adel.math.edu@aden-univ.net & ،a.alqashbari@ust.edu ؛ البريد الالكتروني:عادل محمد علي القشبري* الباحث الممثلّ:  

 2025مارس  31نشر في  /  2025 مارس 13قبل في:  /  2024نوفمبر  07 استلم في:

 المُلخّص 

𝑊𝑗𝑘ℎ في هذه الدراسة، نستكشف تعميم موتر انحناء وِليّ الإسقاطي  
𝑖  (، والتي تعرف فضاءً عامًا 3.1)في  محددة    اشتقاقيةالذي يحقق علاقة

 𝐺يسُمى فضاءً  
2𝑛𝑑  𝑊|ℎ

 − 𝐵𝑅𝐹𝑛 –  العامة،   المتكررة  شتقاقات. من خلال دراسة الشروط التي يحققها هذا الموتر في علاقات الاالاشتقاقي

من الدرجة    المتغييرة  سياق المشتقات، وموتر ريتشي في  والاشتقاق الثنائي  الاحادي،للاشتقاق  -W نقوم بتعريف وتحليل خصائص الموترات

وعلاقاتها مع انحناءات القياس   متغييرالثانية. نستنتج سلسلة من المعادلات التي تصف سلوك هذه الموترات، بما في ذلك تعبيرات المشتق ال

العامة بموترات الالتواء وخصائص    اتوموترات الانحراف. تتمثل المساهمة الرئيسية في إثبات العديد من النظريات التي تربط شروط التكرار

تحت ظروف معينة. تقدم   الاشتقاق  ثنائيلر  سالانحناء. على وجه التحديد، نثبت أن موتر ريتشي والموترات المرتبطة به تظُهر سلوك فضاء فين 

لر. هذه النتائج توسع نظرية سن النتائج رؤى إضافية حول موترات الالتواء والانحراف، مما يبرز دورها في هيكل الانحناء العام لفضاءات في 

 .لر سالعليا في هندسة فين  اتالفضاءات الراجعة، مقدمة إطارًا شاملاً لفهم الظواهر الهندسية للانحناء من الدرج

المفتاحية: فين   الكلمات  وثنائي الاشتقاقلر  سفضاء  المشتق  احادي  وِليّ الإسقاطي  المتغير،  𝑊𝑗𝑘ℎ ، موتر 
𝑖  ،الالتواء   منحنى كارتان، موتر 

   .وموتر ريتشي
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