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Abstract

In this paper, we investigate the structure of generalized H"-recurrent Finsler spaces (G-H"-R-E,) and
establish several recurrence relations for Cartan’s h-curvature tensor and its associated geometric invariants. In
particular, Theorems 3.1, 3.2, and 4a.3 provide novel conditions characterizing the stability and recurrence of
curvature under horizontal covariant differentiation. To demonstrate the practical significance of these results,
we extend the theoretical framework to the domain of digital image processing. A Finslerian metric derived
from image gradients is constructed to model anisotropic features, and the recurrence conditions are shown to
enhance edge preservation during anisotropic diffusion filtering. Simulation steps are outlined, illustrating
how the recurrence properties of curvature tensors improve noise suppression and directional stability
compared to standard Euclidean methods. The proposed approach highlights the dual role of generalized
Finsler recurrence: as a fundamental extension in differential geometry and as a powerful tool for advanced
computer vision applications such as denoising, segmentation, and texture analysis.

Keywords: Finsler geometry, H"-recurrence, Cartan curvature tensor, Anisotropy, Digital image processing,

Anisotropic diffusion.

techniques. The use of transformer-based deep learning
models for image restoration was exemplified in [6],
marking a shift toward data-driven approaches in image
processing.

1. Introduction

Finsler geometry continues to be a rich field of research
due to its capacity to generalize Riemannian geometry
and its applicability in both theoretical and applied
sciences. The work in [1] introduced higher-order Cartan The concept of generalized h-recurrent  Finsler

derivatives and curvature tensors, offering a deeper
understanding of differential structures in Finsler spaces.
A global minimal path framework using Finsler elastica
models was proposed in [2], providing a robust approach
for solving variational problems, particularly in image
analysis. This direction was extended in [3] through fast
asymmetric front propagation methods for image
segmentation tasks, enhancing computational efficiency.

Geometric diffusion processes within Finsler and
Riemannian manifolds were comprehensively analyzed
in [4], offering insights into the interplay between
geometric structures and diffusion behavior. In parallel,
[5] investigated generalized harmonic maps with
practical implications in image processing, showcasing
the relevance of Finsler geometry in modern imaging

connections was addressed in [7] and expanded through
foundational geometric identities in [8], both of which
contribute to the structural understanding of Finsler
spaces. The implementation of level set methods for
anisotropic geometric diffusion in 3D imaging was
introduced in [9], integrating geometric modeling with
computational methods. In [10], a Finsler metric-based
method was utilized for ship detection in SAR images,
reinforcing the applicability of Finsler models in remote
sensing and target recognition.

Advanced techniques in hyperspectral image denoising
and inpainting were proposed in [11], leveraging low-
rank and sparse representations to improve data
reconstruction quality. Further theoretical advancements
in recurrent tensor field decomposition within Finsler
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spaces were detailed in [12], while identities in
generalized R”™h-recurrent spaces were formulated in
[13]. These developments were reinforced by the
additional materials and alternate publishing platforms
provided in [14-20], ensuring accessibility and
reproducibility of the research.

A foundational perspective on Finsler spaces and their
generalizations was presented in [21], establishing a
rigorous mathematical basis for further developments.
Lastly, the pullback formalism and connections in Finsler
geometry were discussed in [22], providing essential
tools for advanced geometric modeling.

2. Preliminaries

Let F, be an nnn-dimensional Finsler space endowed
with the metric function F satisfying the standard
regularity conditions. The components of the associated
metric tensor g;; , Cartan’s connection coefficients F}*}c ,
and Berwald’s connection coefficients Gjik are symmetric

in their lower indices and positively homogeneous of
degree zero with respect to the directional arguments.
The contravariant and covariant metric tensors satisfy the
standard relation:

. 1, if i=k
gk =gk=1"" '
21)  gi9" = {0‘ if %k

where 6} is the Kronecker delta.

The tangent vectors y; and y’satisfy the following
conditions:

22 a yi=g5Y .

b) yiy'=F?,

¢) gij =3i}’j = .]'yi )

d) gy’ =29:;F* =F3;F and

e) 0,y =6}
The (h)hv-torsion tensor C;j; is defined as
(2.3) Cijk=§aigjk=%ai 0; 0 F2

which is symmetric in all indices and positively
homogeneous of degree -1 in the directional argument.
Its associated (v)hv-torsion tensor CJ’}( is given by

(24) a) Clillf = gh] Cijk and
b) Ciji = gnj Cli

And shares the same symmetry and homogeneity
properties.

The unit vector along the direction of y' is

(25 @) =2 and

i

F
For an arbitrary vector field X! , the h-covariant
derivative with respect to x* is defined by Cartan as:

(2.6) X/ =0, X' — (0, X)) Gy + X"}k

Where the functions T;i and G} are defined by

27 &) Li=TCh)-
b) Gy =Tg y® .

Ch, T yS and

The h-covariant differentiation preserves the metric and
tangent vector, i.e.,

(28) @) g;x=0 and
b) y,, =0

and commutes with differentiation with respect to y/
according to

@9 4;(x}) - (0%, = x" @) — (8,X%) P
Also, we have
(210) a) Piny’ =Ty = Pin = Cop ¥

b) 9;Tik = Thks

¢) PLy*=0=P,y"  and

d FI:]l:h = —Pyjp -

Where jikh is the (v)hv-torsion tensor, with its associated
form

(211)  grj Pen = Pyjn -

In Landsberg spaces, the Berwald connection coincides
with Cartan’s connection, satisfying

(2.12)  yr Gjin = =2Cijq5 ¥° = =2 Byen = 0
Various authors denote the tensor Ciknis y* by Py

The h-curvature (Berwald curvature) and h(v)-torsion
tensors are defined by

(213) &) Hyy, = 0; Gy + Gl G + Gly G,
—0; Gy — Ghy G — Gry; G, and
b) Hip = Gy + G Cy — 3Gl — G}, Clye

and satisfy standard homogeneity, symmetry, and
contraction relations, leading to the Ricci tensor,
curvature vector, and scalar curvature:

(2.14) a) Hjikh y/ =Hpy ,
b) Hjy, = 0; Hip, , and

¢) Hj = 0;Hj, .
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These tensors were constructed initially by mean of the
tensor H: , called the deviation tensor, given by

(2.15) H{ =20,G' —0,GLy" + 2GL, G — GL G} .

The deviation tensor H}. is positively homogeneous of
degree two with respect to the directional argument.
Applying Euler’s theorem for homogeneous functions
and performing the contraction of the indices i and h in
equations (2.14) and (2.15), the following relations are
obtained:

(2.16) @) Hjy/ =—Hi;y' =H |
b) Hj, = H]'T;(r )
¢) Hj=Hj ,
d) (n—1)H =H] ,
€) Hygn =Hpe —Hpn , and
f) yH =0

These relations describe the contraction properties of the
deviation tensor and establish the connections between
the Ricci tensor, curvature vector, and scalar curvature
within the Finsler geometric framework. The contracted
tensor Hy;, (Ricci tensor), the curvature vector H, , and
the scalar curvature H are interrelated through the
following relations, reflecting the intrinsic geometric
properties of the Finsler space.

(217) a) Hkh = 6k Hh y
b) Hkhyk = Hh and
c) Hyy*=m-1)H .

The tensors Hj,, and Hy, satisfy the subsequent

identities, which ensure consistency within the h-
curvature framework.

(2.18) @) Hijkn = gjr Hipre
b) Hjn = gjrHpr
) YiH =0 ,
d) Hjikh + Hfiljk + Hlichj =0
Furthermore, the necessary and sufficient condition for

an n-dimensional Finsler space F,(n > 2) to possess
scalar curvature is expressed as:

(2.19) Hj =F*R(8, —1',)

where R denotes the scalar curvature, &} is the Kronecker
delta, and ! represents the unit vector in the direction of
the tangent to the Finsler manifold. This condition
provides a precise criterion for identifying scalar-
curvature Finsler spaces within the generalized geometric
setting.

Finally, the third Cartan curvature tensor R}kh obeys the
Bianchi identities and relates to the Berwald curvature

via

(2'20) R;khls + R;sklh + R;hslk

+(R71;thPjiIcr + Rrrnthjisr + RrrnskPjihr)ym =0.
and this tensor satisfies the following relation too
(221) @) R}kh = K]Lkh + C]ls K y™ , and

b) Rijkn = Kijkn + Cijs Hin

The curvature tensor K]-ikh satisfies the following known
as Bianchi identities

(222) Kjn+Kij +Kipj =0 , and

(2.23)  Kjrkn + Knrjic + Kirnj = 0

3. Necessary and Sufficient Condition for
Generalized h-Recurrent

In the study of Finsler geometry, recurrent structures
provide a powerful framework for characterizing the
behavior of curvature tensors under covariant
differentiation. Among these, generalized recurrent
conditions play a central role in extending classical
results to broader settings. In particular, the concept of a
generalized H"-recurrent Finsler space arises when the
Berwald curvature tensor satisfies a specific linear
relation involving two non-null covariant vector fields.
Such a structure, denoted by G-H"-R-E,, enables the
systematic analysis of the interplay between curvature
tensors, torsion tensors, and their associated contractions.

This section develops the necessary and sufficient
conditions for a Finsler space to be generalized H"-
recurrent. By employing transvection operations and
utilizing fundamental identities from earlier sections, we
establish explicit relations for the covariant derivatives of
the Berwald curvature tensor and its associated tensors.
Furthermore, a sequence of theorems is presented,
characterizing the precise conditions under which these
tensors preserve h-recurrence. These results not only
generalize existing recurrence conditions in Finsler
geometry but also provide new insights into the structural
properties of higher-order curvature tensors.

Consider an n-dimensional Finsler space F, whose
Berwald curvature tensor Hjikh satisfies the relation

(31 Hjpy = MHjen + (S5 gjx — Sk gjn)
+;51(Hﬁ gik-Hi gjn) + Hyn #0

where 1; , y; and §; are non-vanishing covariant vector
fields. A Finsler space fulfilling this condition is referred
to as a generalized H"-recurrent Finsler space, denoted
by G-H"-R-E,.
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By contracting and transvecting this defining condition
with suitable tensorial components, several equivalent
forms of recurrence relations are obtained. These
relations characterize the behavior of the Berwald
curvature tensor, its associated torsion tensor, and the
deviation tensor under h-covariant differentiation. As a
result, a series of theorems are established, each
providing the necessary and sufficient condition for these
tensors to preserve the h-recurrence property.

In particular, the analysis demonstrates how the
recurrence of the Berwald curvature tensor and its
associated tensors depends on the interaction between the
covariant vectors 4, , 4; and §; and the underlying Finsler
metric. The derived conditions not only generalize
existing recurrence structures but also highlight new
connections between higher-order curvature tensors
within the broader framework of Finsler geometry.

Now, let us consider a generalized H"-recurrent Finsler
space defined by the condition (3.1).

By transvecting equation (3.1) with y/, and making use
of relations (2.8b), (2.14a), and (2.2a), we obtain a new
form of the recurrence relation.

(32) H]lch” - AlHll:ch + #l(s;l Vi —

+ idz(Hriz Vi~ Hic Yn) -

Furthermore, transvecting equation (3.2) with y*, while
applying (2.8b), (2.16a), (2.2b), and (2.1), leads to an
additional expression.

(33)  Hy, = AHf + w(8hF? =y y')

5lic J’h)

+ 8,(HLF?- HE y y") .

Similarly, transvecting equation (3.2) with g;, and
employing (2.18b), (2.8a), and (2.1), we arrive at another
equivalent condition.

(B4)  Hyppy = MHipn + 11 (Gnp Yic = Gip Vi)

1 . .
+2 81 9ip(HAF* - Hi yn v") -
Accordingly, we establish the following:

Theorem 3.1. The h-covariant derivatives of the h(v)-
torsion tensor Hj,and the deviation tensor H. in a
generalized H"-recurrent Finsler space G-H"-R-F, are
expressed through conditions (3.2), (3.3), and (3.4),
respectively.

By differentiating equation (3.2) partially with respect to
y’, and applying relations (2.14b), (2.14c), (2.2c), and
(2.10b), together with the commutation formula given in
(2.9) for the h(v)-torsion tensor H}k we obtain the
following result:

3.5)
kah.l + Hin Uiy = HenDidy = Hir Uiy = Hewn Py
= (a]AI)H;;h + AlHj':kh
+ (ajul)(S;l Vi~ 8k Yn)
+ W (5rll Jjk — Ok gjh)
1,. ) .
+ P (0;6,)(H}, yi- Hi. yn)
1 i i
+ Z5L(Hjh Y~ Hjie Yh)-

This shows that

(3.6) Hjlkh,l MHn + (84 gk — 6k 9jn)
+3 Sl(Hjih Y= Hjik Yh)

If and only if

(3.7) HinTivi = HinTil — Hie Tt — Hpn Py

= (6 A)Hiy + ( Hl)(5h Yk — 6k Yn)

+ % (0;6,)(Hh = Hic 1) -
Thus, we conclude

Theorem 3.2. In a G-H"-R-F,, the Berwald curvature
tensor H]-"kh is h-recurrent provided that condition (3.7) is
satisfied.

By transvecting condition (3.5) with g;, , and making
use of (2.8a), (2.18a), and (2.1), we arrive at the
following:

3.8)
Hipknu + Gip [Hl:hr}*rll — Hyp Ty, — Hip T T

= LHjpin + Gip [(0;4)HEp + (31'#1)(5;1 Vi
+ Ml(gjk Inp — 9jn gkp)

+i(a‘j6l)(Hfil Vi~ Hic y) 9ip + i(sl(Hjih Vi

This shows that

1l”kh l]

- 511; yh)]
Hjik yh) YJip

(3.9 Hppenn = A Hipren + 1 (Gjx Gnp — Gjn Irp )

1 . .
+;51(Hjln Vi~ Hjj Yn) gip -

If and only if

(3.10) Hip, F]rl Hrlhrﬁcrl Hlicr Fﬁzrz - Hrikh Pjrl

= (ajﬂ'l)Hllch + (ajﬂl)((sfiz Yk — 5}; Yh)
+ % (aj5l)(HriL Vi~ H}i Yh)-
Thus, we conclude

Theorem 3.3. In a G-H"-R-E,, the associate tensor
Hjpkpn of the Berwald curvature tensor H}kh is h-recurrent
if and only if condition (3.10) holds.
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By contracting the indices i and h in condition (3.5), and
using relations (2.16b), (2.16d), (2.16f), (2.16c) and
(2.18c), we obtain:

(311)  Hjy, + Hip ) — He T — HE, T

—H. P = AHj + (aj’ll)Hk

+(n— DOy + (n— Dpwgj

+ % (n—1)(9;6,)(Hy) + i5z (Hjyx) -
This shows that

(312)  Hyyy = AHye + (n— 1) gy + 8. (Hye) -
If and only if

(313)  Hipl, — HoTid = HL.T — HocP
= (0;4)Hye + (n — 1)(9;14) v
+(n — 1)(3;8,)(Hy) -

Thus, we conclude

Theorem 3.4. In a G-H"-R-E, , the associate tensor Hjy

of the Berwald curvature tensor H;,, is h-recurrent if and
only if condition (3.13) is satisfied.

By contracting the indices i and j in equation (3.5), and
applying (2.16e), (2.16c) and (2.1), we derive the
following:

(314)  (Hux — Hin)y + Hin Dol — HinGol

—Hy, Tohu = HiynPot = Ai(Hpie — Hin)
+(0p 1) Hiy, + (9pis) (81 i — 839n)
+ i (0,8.) (Hy v~ Hyyn) + i5l(thk_ Hiyn).
This shows that
(3.15)  (Hux — Hyn)yy = 4i(Hpx — Hyen)
If and only if

(3.16) Hpy F;fz - Hfh pircl - Hlfr p;l - kah 51

= (0p &) Hin + (9, 1) (85, vic — 8 vn)
+ % (ap5l) (Hiyi=Hgyn) + isl(thk_ Hiyn).
Thus, we conclude

Theorem 3.5. In a G-H"-R-E,, the associate tensor
(Hpy — Hyy) of the Berwald curvature tensor Hj"kh is h-
recurrent if and only if condition (3.16) holds.

Next, by differentiating equation (3.3) partially with
respect to y*, and applying (2.14c), (2.2d), (2.2a),
(2.2c), and (2.2e), together with the commutation
formula given in (2.9) for the h(v)-torsion tensor H} , we
obtain an additional relation.

(3.17) H:

r i i p*r i r
e T Hr Tery = Hy Ty — Hep Pry

= (Owl)Hp + L Hig + (0rty) (81F2 = yn y*)
+iy (25;; Ve — Gkny ' — b5 }’h)
+%(ak6l)(Hfi1F2_HIi( Yh yk)
+%51(H;'sz2—Hf; Yn) -

Furthermore, interchanging the indices k and h in
condition (3.17), and subtracting the resulting equation
from (3.17), yields a refined expression that further
characterizes the recurrence structure.

(3.18)
(OxHp, — 0nHj, )u + [ HiTih — HETehy — HinPly
— HiThty + Hi Tify + Hiy Py
=1 (akHriz - 5thi)
+3 1 (8 i — 6k )
+ [(61:11)1'1}1 + (6k,ul)(5}i1F2 —yny')
- (6hAI)HIi - (611!11)(511; F? —yy yi)]

1,. ) )
+ 1 (akdl)(Hflle_ H yn yk)

1 . .
+7 §,(HL F2-HL yy).

4. Special Generalized H"-Recurrent Finsler
Spaces

In this section, we investigate several special cases of
generalized H"-recurrent Finsler spaces that play an
essential role in the structural study of Finsler geometry.
We begin with the case of affinely connected spaces
(Berwald spaces), where the connection parameters
become independent of the directional arguments,
leading to simplified recurrence relations for the Berwald
curvature tensor and its associated tensors. Subsequently,
we consider P2-like generalized H™-recurrent spaces,
which are characterized by specific relations involving
the torsion tensors and curvature identities. Finally, we
address the P*-generalized H"-recurrent spaces,
highlighting their connections with P2-like spaces and
the recurrence conditions imposed on their torsion
tensors. These subclasses provide deeper insights into the
geometry of generalized recurrent Finsler spaces and
demonstrate how particular structural assumptions lead to
distinct forms of curvature recurrence.

4a. A Generalized H"-Recurrent Affinely Connected
Space

A Finsler space F, in which the connection coefficients

G}k are independent of the directional arguments y* is

referred to as an affinely connected space or Berwald
space. Consequently, an affinely connected Finsler space
can be equivalently characterized by any of the following
conditions:

194

2025 suiss | EJUA-BA



Pages 190-200

Generalized H"-Recurrent Finsler Geometry with Applications to Anisotropic Image Processing

(4a1) a) G, =0 and b) Cijkjh) =0

In such a space, the connection parameters of Cartan,
It coincide with the Berwald connection coefficients
Gl, and are independent of the directional arguments,
ie.,

(4a2) a) 9;GL, =0 and b) 9; Iyt =0

Definition 4.1. A generalized H"-recurrent Finsler space
FnF_nFn is termed an affinely connected generalized
H"-recurrent Finsler space if it satisfies at least one of
the conditions (4a.1a), (4a.1b), (4a.2a), or (4a.2b). Such a
space is denoted concisely as G-H"-R-E, affinely
connected space.

Now, consider a G-H"-R-E, space that is affinely
connected. If the directional derivatives of the covariant
vector fields vanish, i.e., d;4, =0, d;u; = 0 and 9;5, =
0, then in view of condition (4a.2b), equation (3.5)
reduces to:

(4a3) H:

— i i r
en = MHjien + Hygen Py

. . 1 . .
+u (8195 — Skgjn) + nd (Hjlh Vi~ Hjj Yh)-
Thus, we conclude

Theorem 4a.1. In a G-H"-R-E, affinely connected space,
if the directional derivatives of the first-order covariant
tensor fields vanish, then the Berwald curvature tensor
Hjy, is h-recurrent.

Assume now that a G-H"-R-E, space is affinely
connected and that 9;4, = 0, d;; = 0 and

6]-61 = 0. Under these conditions, in view of (4a.2b) and
using (2.18a), equation (3.8) reduces to

(4a.4)  Hppenn = AiHjpkn + Hrpin Py

1 . .
+i (gjkghp - gjhgkp) + ;51 (Hjlhyk_ Hjlkyh)gip .
Thus, we conclude

Theorem 4a.2. In such a space, if the directional
derivatives of the first-order covariant tensor fields
vanish, then the associated tensor Hj,, is h-recurrent.

Similarly, for the same affinely connected space with
A4, =0, =0 and 9;6, =0, equation (3.11)
reduces to

(4a5) ijll = Alij + HTkI)jTi
1
+m - gj + ;51(Hj3’k) .

Thus, we conclude

Theorem 4a.3. Under these conditions, the Ricci tensor
Hjy, of the Berwald curvature tensor H}kh is h-recurrent.

Considering the affinely connected space G-H"-R-E, and
assuming 9;4, =0, d;u; =0 and 9;5, = 0, equation
(3.14) reduces to

(4a.6) (Hpx — Hyn)yy = A (Hpye — Hyr)
1
+Hp Poy + 5 81 (HnYie= Hicyn) -
Thus, we conclude

Theorem 4a.4. In this case, the tensor (Hy,, — Hyp) is h-
recurrent.

Similarly, under the same assumptions, equation (3.17)
reduces to

(4a.7) H,ih” = MH}, + HL, P,

+ U (25;1 Ve — iny ' — 5;&)’}1)
; . )
+ 2 8(Hu F?~ Hiyn) -
Thus, we conclude

Theorem 4a.5. Thus, the h(v)-torsion tensor Hi, is h-
recurrent.

Transvecting the above equation by y* and using
standard relations (2.16a), (2.16f), (2.8b), (2.10c), (2.2b),
(2.2a) and (2.1), we obtain

(4a8) H. = AH. +2u, (8LF? —y,yY)

hil
1 .
+28,(HyF?)
Contracting indices i and h, one gets
(4a9) H,=A4H+2uF?+ %(n —1)6,(HF?) .
Trausvecting (4a.7) by g;, , using equations (2.18b),
(2.8a), (2.1) and (2.2a), we get

(42.10)  Hy,py = AHipn + Hepn Py

+ Mz(29hp)’k — GknYp — gkpyh)
1 )
+2 8i(HipnF*-Hiyngip) -
Thus, we conclude

Theorem 4a.6. Hence, in an affinely connected G-H"-R-
F, space with vanishing directional derivatives of the
first-order covariant tensor fields, the deviation tensor
H}., the scalar curvature H, and the associated tensor
Hyp,, of the Berwald curvature tensor I-Ij"kh are h-
recurrent.

Finally, assuming 9;4, =0 , d;; =0 and 9;6, =0 ,
equation (3.18) reduces to

+3w (8% yie — 8 yn) + HLy Py — HL PRy
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1 i 2 i
+2 8/ (HhicF?~Hiyn) -
Thus, we conclude

Theorem 4a.7. Accordingly, the tensor (3, H} — d,HL)
is h-recurrent.

4b. P2- like a Generalized H"-Recurrent Space

P2-like Finsler spaces represent an important subclass of
generalized H™-recurrent spaces, characterized by
specific algebraic relations between their torsion and
curvature tensors. These spaces provide a natural
generalization of P*-Finsler structures, allowing the
study of recurrence properties of higher-order curvature
tensors and their associated tensors under specific
directional derivatives.

In particular, P2-like spaces facilitate the analysis of the
interplay between Berwald curvature and hv-torsion
tensors, offering deeper insight into the geometric
structure of affinely connected Finsler spaces.

Definition and Fundamental Relations:
A P2-like space is defined by the condition

Pfip = B;Cip — ©'Cjyp, , Where @; and @' are non-zero
covariant and contravariant vector fields, respectively.

Such a P2-like space is necessarily a P*-Finsler space,
characterized by

(4b.2) Pl =@Ck, , where
Pjikhyj = P,ih = C(ikh|s)ys :
Geometric ldentities:

For a P2-like generalized H"-recurrent space G-H"-R-E,
, combining equations (4b.1), (4b.2), and the identity
(2.20), we obtain

+ R!

(@b.3) R, +R -

jkhis jskih
+0;(HisCr + HinCir + Hy Crr)

— O'(HpsCiter + Hpn Cisr + HyCipy) = 0
Applying the relevant conditions (2.21a), (2.22), (2.21b),
and (2.23), this simplifies to

Rins * Risian + Rinsye + 5 (Rhsic + Rions + Rben)

— 0" (Rjskn + Rins + Rjkns) =0 .

Transvecting the above by g;, and using g;,Rhg =
Rjgn and gip(z)i = @, and then further contracting with
y’/ , we obtain

(4b.4) R

jpkhis + ijsklh +R;

jphsik

—HZ)J' (thsk + Rkphs + Rspkh)

—0, (Rjskn + Rinsic + Rjxns) = 0 .

Transvecting the above by y/, we obtain

(4b5) Hpk.hls + Hps.klh + th.slk

+ Q)(thsk + Rkphs + Rspkh)
= @p(Hsep + Hps e + Hins) = 0,

Differentiating equation (2.18c) with respect to y/ and
taking the skew-symmetric part over the indices j, k, h,
we obtain

(4b.6)  gijHl +yiHiy =0 .

Taking skew-symmetric part of (4b.6) with respect to the
indices j , k and h, using (2.18d) and using (2.18b), we
get

(4b.7)  Hpjx +Hjygp +Hepj =0
putting equation (4b.7) in equation (4b.5), we get
(4b8) Hpk.hls + Hps.klh + th.slk

+®(th5k + Rkphs + Rspkh) = 0 .

Finally, using the generalized H"-recurrent condition
(3.4), we get

(4b.9)  AHppp + ApHps i + AcHpp s
+1ts(gnk Yo = 9ok Yn) + 1n(Grs Yo = Gps Vi)
+ I’lk(gshyp - gphys) + ®(thsk + Rypns + Rspkh)
+58, gip(HLF?- Hiy y y¥) = 0 .
Thus, we conclude

Theorem 4b.1. In a P2-like G-H"-R-F, space, the
identities above (4b.8) and (4b.9), are satisfied.

We have the definition of a P2-like G-H"-R-F, as
following

Definition 4b.1. A generalized H"-recurrent Finsler
space F, is called P2-like if it satisfies condition (4b.1).
Such a space is denoted briefly as P2-like G-H"-R-E, .

4c. P*- Generalized H"-Recurrent Space

The notion of a P*-Finsler space provides a natural
generalization of P2-like structures in Finsler geometry.
Such spaces are characterized by a special relation
between the hv-torsion tensor and the projective tensor,
leading to simplified identities that play a crucial role in
the study of recurrent and affinely connected spaces.
Extending this framework to generalized H"-recurrent
settings allow us to establish deeper connections between
hv-torsion tensors, recurrence conditions, and curvature
relations within Finsler spaces.

Definition and Properties:

A P*-Finsler space is defined by the condition

196

2025 suiss | EJUA-BA



Pages 190-200

Generalized H"-Recurrent Finsler Geometry with Applications to Anisotropic Image Processing

(4cl) Pi, = C(ikh|j)yf =@Cl, , ©+0 , where
denoted @ by 1.

Remark 4c.1. Every P2-like space is a P*-Finsler space,
characterized equivalently by

(4c2) P, =0Ch,
Where Pl y/ = Piy = Clpj )y’ -

Definition 4c.1. A generalized H"-recurrent space is
called a P*-generalized H"-recurrent Finsler space if it
satisfies condition (4c.1). Such a space is denoted by P*-
G-H"-R-E, .

h-Covariant Derivative Relations:

Taking the h-covariant derivative of equation (4c.1) with
respect to x! in the sense of Cartan’s second kind, we
obtain

(4c:3) Pty =@ Clrnpty + 2( 1)ty

If the (v) hv-torsion tensor Cf, is h-recurrent, i.e.,
(4c.4) (ikh|l) = b Cip, + Q( 0)ckn

Putting equation (4c.1) in (4c.4), then the above relation
reduces to

i
Ckn

(4c5)  Ppypy = biPin + 5
This further implies

(4c6)  Plpypy = biPin -

if and only if

(4c.7) (Z)( 1) cin = 0

Thus, we conclude

Theorem 4c.1. In a P*-generalized H"-recurrent Finsler
space P*-G-H"-R-E,, the v(hv)-torsion tensor P}, is h-
recurrent, provided that the (v) hv-torsion tensor C, is h-
recurrent, if and only if condition (4c.7) is satisfied.

5. Application of Generalized H"-Recurrent
Finsler Spaces in Image Processing

The theoretical results obtained in this paper, particularly
Theorems 3.1, 3.2, and 4a.3, establish recurrence
relations for Cartan’s h-curvature tensor Hj"kh and their
generalizations in G-H"-R-F,. These relations provide
structural constraints on the geometric quantities of
Finsler spaces, which can be exploited in practical
contexts where anisotropy and direction-dependent
features play a central role. A prominent example of such
a context is digital image processing, where edge
detection, noise suppression, and texture analysis require
anisotropic metrics that go beyond the Euclidean
framework.

5.1. Finsler Metric for Images

Let an image be represented by a grayscale intensity
function I(x, y) defined on a 2D domain. We introduce a
Finslerian metric of the form

(5.1.1) F(x,y,%,y) =
Ja(e, y)x2 + b(x, y)y2 + 2c(x, )%y .

Where the symbols denote the following:

x,y : local coordinates on the two-dimensional manifold,

X = % , Y= % : components of the tangent (velocity)
vector,

a(x,vy), b(x,y), c(x,y): smooth functions of (x,y)
defining the metric structure.

Thus, F represents the Finsler function associated with
the metric.

Where the coefficients are chosen as functions of the
local image gradient:

a2
(6120  awy=1+a(2) . by =1+
ar\?2 a1 al
Q(E) ,c(x,y)zaaa .

Here, a > 0 is a tunable parameter controlling the
anisotropy of the metric.

5.2. Role of H"-Recurrence

From Theorem 3.1, the condition

(5.21) lejikh =4 H]L:kh + Hjikh )

imposes a recurrence relation on the curvature tensor. In
the image processing framework, this recurrence can be
interpreted as the stability of directional curvatures under
successive  filtering iterations. This stability is
particularly useful for preserving edges and contours
during anisotropic diffusion processes.

5.3. Simulation Steps

The following computational procedure illustrates the
application of the above concepts:

Image Preprocessing: Convert the input image into
grayscale intensity I(x,y) .

Metric Construction: Compute :—; and 2—; using finite

differences. Construct the coefficients (a,b,c) and
define the Finsler metric F(x, y, X, ).

Connection and Curvature Computation: Using the
metric F, calculate Cartan’s connection coefficients and
the h-curvature tensor H]-"kh . Verify the recurrence
condition derived in Theorem 3.1 for different regions of
the image.

Filtering/Segmentation:  Apply anisotropic diffusion
guided by the Finsler metric. At each iteration, update
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pixel intensities along geodesics defined by the metric
and evaluate the effect of the recurrence condition on
edge preservation.

Analysis of Results: Compare the processed image with
the standard Euclidean anisotropic diffusion. Images
filtered with the Finslerian model are expected to show
improved edge sharpness and better handling of
anisotropic textures, consistent with the recurrence
property.

5.4. Discussion

This application illustrates that the recurrence conditions
established for generalized H"-recurrent Finsler spaces
are not only mathematically significant but also provide a
geometric framework for practical algorithms in
computer vision. Future extensions may include
applications to 3D medical imaging, facial recognition,
and texture classification, where directional stability is
crucial.

6. Conclusions

In this work, we established the necessary and sufficient
conditions for the existence of generalized H"-recurrent
Finsler spaces, denoted as G-H"-R-F,, . By systematically
analyzing the Berwald curvature tensor and its associated
tensors under h-covariant differentiation, we derived a
sequence of equivalent recurrence relations and presented
several theorems that characterize their structural
behavior. These results demonstrate that the recurrence
of curvature and torsion tensors depends fundamentally
on the interplay between the covariant vector fields 4, ,
u; and §; , together with the underlying Finsler metric.

The study further revealed that the Berwald curvature
tensor, its associated torsion tensor, the Ricci tensor, the
deviation tensor, and other higher-order contractions all
preserve h-recurrence when specific tensorial conditions
are satisfied. Moreover, we investigated special
subclasses of generalized H"-recurrent Finsler spaces,
including affinely connected (Berwald) spaces and P2-
like structures, showing how additional constraints lead
to simplified recurrence relations and deeper geometric
insights.

Overall, the findings not only generalize classical
recurrence conditions in Finsler geometry but also
highlight new interconnections between higher-order
curvature tensors. These results enrich the structural
theory of Finsler spaces and provide a solid foundation
for potential applications in geometric analysis,
anisotropic models, and related fields of differential
geometry.
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