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Abstract 

In this paper, we investigate the structure of generalized 𝐻ℎ-recurrent Finsler spaces (𝐺-𝐻ℎ-R-𝐹𝑛) and 

establish several recurrence relations for Cartan’s h-curvature tensor and its associated geometric invariants. In 

particular, Theorems 3.1, 3.2, and 4a.3 provide novel conditions characterizing the stability and recurrence of 

curvature under horizontal covariant differentiation. To demonstrate the practical significance of these results, 

we extend the theoretical framework to the domain of digital image processing. A Finslerian metric derived 

from image gradients is constructed to model anisotropic features, and the recurrence conditions are shown to 

enhance edge preservation during anisotropic diffusion filtering. Simulation steps are outlined, illustrating 

how the recurrence properties of curvature tensors improve noise suppression and directional stability 

compared to standard Euclidean methods. The proposed approach highlights the dual role of generalized 

Finsler recurrence: as a fundamental extension in differential geometry and as a powerful tool for advanced 

computer vision applications such as denoising, segmentation, and texture analysis. 

Keywords: Finsler geometry, 𝐻ℎ-recurrence, Cartan curvature tensor, Anisotropy, Digital image processing, 

Anisotropic diffusion. 
 

 

1. Introduction 

Finsler geometry continues to be a rich field of research 

due to its capacity to generalize Riemannian geometry 

and its applicability in both theoretical and applied 

sciences. The work in [1] introduced higher-order Cartan 

derivatives and curvature tensors, offering a deeper 

understanding of differential structures in Finsler spaces. 

A global minimal path framework using Finsler elastica 

models was proposed in [2], providing a robust approach 

for solving variational problems, particularly in image 

analysis. This direction was extended in [3] through fast 

asymmetric front propagation methods for image 

segmentation tasks, enhancing computational efficiency. 

Geometric diffusion processes within Finsler and 

Riemannian manifolds were comprehensively analyzed 

in [4], offering insights into the interplay between 

geometric structures and diffusion behavior. In parallel, 

[5] investigated generalized harmonic maps with 

practical implications in image processing, showcasing 

the relevance of Finsler geometry in modern imaging 

techniques. The use of transformer-based deep learning 

models for image restoration was exemplified in [6], 

marking a shift toward data-driven approaches in image 

processing. 

The concept of generalized h-recurrent Finsler 

connections was addressed in [7] and expanded through 

foundational geometric identities in [8], both of which 

contribute to the structural understanding of Finsler 

spaces. The implementation of level set methods for 

anisotropic geometric diffusion in 3D imaging was 

introduced in [9], integrating geometric modeling with 

computational methods. In [10], a Finsler metric-based 

method was utilized for ship detection in SAR images, 

reinforcing the applicability of Finsler models in remote 

sensing and target recognition. 

Advanced techniques in hyperspectral image denoising 

and inpainting were proposed in [11], leveraging low-

rank and sparse representations to improve data 

reconstruction quality. Further theoretical advancements 

in recurrent tensor field decomposition within Finsler 
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spaces were detailed in [12], while identities in 

generalized R^h-recurrent spaces were formulated in 

[13]. These developments were reinforced by the 

additional materials and alternate publishing platforms 

provided in [14-20], ensuring accessibility and 

reproducibility of the research. 

A foundational perspective on Finsler spaces and their 

generalizations was presented in [21], establishing a 

rigorous mathematical basis for further developments. 

Lastly, the pullback formalism and connections in Finsler 

geometry were discussed in [22], providing essential 

tools for advanced geometric modeling . 

2. Preliminaries  

Let 𝐹𝑛 be an nnn-dimensional Finsler space endowed 

with the metric function F satisfying the standard 

regularity conditions. The components of the associated 

metric tensor 𝑔𝑖𝑗 , Cartan’s connection coefficients  Γ𝑗𝑘
∗𝑖  , 

and Berwald’s connection coefficients 𝐺𝑗𝑘 
𝑖  are symmetric 

in their lower indices and positively homogeneous of 

degree zero with respect to the directional arguments. 

The contravariant and covariant metric tensors satisfy the 

standard relation: 

(2.1)       𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖
𝑘 =  { 

1   ,      𝑖𝑓      𝑖 = 𝑘     ,
0   ,      𝑖𝑓      𝑖 ≠ 𝑘     .

    

where 𝛿𝑗
𝑖 is the Kronecker delta. 

The tangent vectors  𝑦𝑖   and   𝑦𝑖  satisfy the following 

conditions: 

(2.2) a)    𝑦𝑖 = 𝑔𝑖𝑗  𝑦𝑗  , 

b)   𝑦𝑖𝑦𝑖 = 𝐹2  , 

c)   𝑔𝑖𝑗 = 𝜕̇𝑖  𝑦𝑗 = 𝜕̇𝑗  𝑦𝑖    , 

d)   𝑔𝑖𝑗  𝑦𝑗 =
1

2
𝜕̇𝑖𝐹

2 = 𝐹𝜕̇𝑖𝐹    and 

e)   𝜕̇𝑗 𝑦𝑖 = 𝛿𝑗
𝑖   . 

The (h)hv-torsion tensor 𝐶𝑖𝑗𝑘 is defined as 

(2.3)       𝐶𝑖𝑗𝑘 =
1

2
𝜕̇𝑖  𝑔𝑗𝑘 =

1

4
𝜕̇𝑖  𝜕̇𝑗 𝜕̇𝑘  𝐹2   , 

which is symmetric in all indices and positively 

homogeneous of degree -1 in the directional argument. 

Its associated (v)hv-torsion tensor 𝐶𝑗𝑘 
ℎ  is given by 

(2.4) a)   𝐶𝑖𝑘
ℎ = 𝑔ℎ𝑗  𝐶𝑖𝑗𝑘    and 

b)  𝐶𝑖𝑗𝑘 = 𝑔ℎ𝑗  𝐶𝑖𝑘
ℎ    . 

And shares the same symmetry and homogeneity 

properties. 

The unit vector along the direction of  𝑦𝑖  is 

(2.5)       a)   𝑙𝑖 =
 𝑦𝑖

𝐹
     and 

b)    𝑙𝑖 = 𝑔𝑖𝑗𝑙𝑗 = 𝜕̇𝑖 𝐹 =
 𝑦𝑖

𝐹
   . 

For an arbitrary vector field 𝑋𝑖 , the h-covariant 

derivative with respect to 𝑥𝑘 is defined by Cartan as: 

(2.6)       𝑋
𝑘׀
𝑖 = 𝜕𝑘 𝑋𝑖 − (𝜕̇𝑟 𝑋𝑖) 𝐺𝑘

𝑟 + 𝑋𝑟Γ𝑟𝑘
∗𝑖    . 

Where the functions  Γ𝑟𝑘
∗𝑖   and  𝐺𝑘

𝑟   are defined by 

(2.7)       a)    Γ𝑟𝑘
∗𝑖 = Γ𝑟𝑘

𝑖 − 𝐶𝑚𝑟
𝑖  Γ𝑠𝑘

𝑚  𝑦𝑠   and 

b)   𝐺𝑘
𝑟 = Γ𝑠𝑘

∗𝑟  𝑦𝑠  . 

The h-covariant differentiation preserves the metric and 

tangent vector, i.e., 

(2.8)       a)    𝑔𝑖𝑗׀𝑘 = 0    and 

b)   𝑦
𝑘׀
𝑖 = 0    . 

and commutes with differentiation with respect to 𝑦𝑗 

according to 

(2.9)      𝜕̇𝑗 (𝑋
𝑘׀
𝑖 ) − (𝜕̇𝑗𝑋𝑖)

𝑘׀
= 𝑋𝑟(𝜕̇𝑗Γ𝑟𝑘

∗𝑖 ) − (𝜕̇𝑟𝑋𝑖) 𝑃𝑗𝑘 
𝑟  , 

Also, we have 

(2.10)     a)    𝑃𝑗𝑘ℎ 
𝑖 𝑦𝑗 = Γ𝑘𝑗ℎ

∗𝑖  𝑦𝑗 = 𝑃𝑘ℎ
𝑖 = 𝐶

𝑘ℎ׀𝑟
𝑖  𝑦𝑟   , 

b)   𝜕̇𝑗Γℎ𝑘
∗𝑟 = Γℎ𝑘𝑗

∗𝑟   , 

c)    𝑃𝑘ℎ 
𝑖 𝑦𝑘 = 0 = 𝑃𝑘ℎ 

𝑖 𝑦ℎ  , and 

d)   𝑦𝑖 Γ𝑘𝑗ℎ
∗𝑖 = −𝑃𝑘𝑗ℎ   . 

Where 𝑃𝑗𝑘ℎ  
𝑖 is the (v)hv-torsion tensor, with its associated 

form 

(2.11)     𝑔𝑟𝑗 𝑃𝑘ℎ
𝑟 = 𝑃𝑘𝑗ℎ   . 

In Landsberg spaces, the Berwald connection coincides 

with Cartan’s connection, satisfying 

(2.12)     𝑦𝑟  𝐺𝑗𝑘ℎ
𝑟 = −2𝐶𝑖𝑗𝑘׀𝑠 𝑦𝑠 = −2 𝑃𝑗𝑘ℎ = 0   . 

Various authors denote the tensor  𝐶𝑗𝑘ℎ׀𝑠 𝑦
𝑠  by  𝑃𝑗𝑘ℎ . 

The h-curvature (Berwald curvature) and h(v)-torsion 

tensors are defined by 

(2.13)  a) 𝐻𝑗𝑘ℎ
𝑖 = 𝜕𝑗 𝐺𝑘ℎ

𝑖 + 𝐺𝑘ℎ 
𝑟 𝐺𝑟𝑗

𝑖 + 𝐺𝑟ℎ𝑗 
𝑖 𝐺𝑘

𝑟  

                  −𝜕𝑗 𝐺ℎ𝑘
𝑖 − 𝐺ℎ𝑘 

𝑟 𝐺𝑟𝑗
𝑖 − 𝐺𝑟𝑘𝑗 

𝑖 𝐺ℎ
𝑟  , and 

b)   𝐻𝑘ℎ
𝑖 = 𝜕ℎ𝐺𝑘

𝑖 + 𝐺𝑘 
𝑟 𝐶𝑟ℎ

𝑖 − 𝜕𝑘𝐺ℎ
𝑖 − 𝐺ℎ 

𝑟 𝐶𝑟𝑘
𝑖    , 

and satisfy standard homogeneity, symmetry, and 

contraction relations, leading to the Ricci tensor, 

curvature vector, and scalar curvature: 

(2.14)     a)   𝐻𝑗𝑘ℎ
𝑖  𝑦𝑗 = 𝐻𝑘ℎ

𝑖   , 

b)   𝐻𝑗𝑘ℎ
𝑖 = 𝜕𝑗  𝐻𝑘ℎ

𝑖    ,   and  

c)  𝐻𝑗𝑘
𝑖 = 𝜕𝑗 𝐻𝑘

𝑖   . 
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These tensors were constructed initially by mean of the 

tensor 𝐻ℎ  
𝑖 , called the deviation tensor, given by 

(2.15)    𝐻ℎ
𝑖 = 2𝜕ℎ𝐺𝑖 − 𝜕𝑟𝐺ℎ 

𝑖 𝑦𝑟 + 2𝐺ℎ𝑠 
𝑖 𝐺𝑠 − 𝐺𝑠

𝑖  𝐺ℎ
𝑠 . 

The deviation tensor 𝐻ℎ 
𝑖  is positively homogeneous of 

degree two with respect to the directional argument. 

Applying Euler’s theorem for homogeneous functions 

and performing the contraction of the indices i  and  h  in 

equations (2.14) and (2.15), the following relations are 

obtained: 

(2.16)     a)   𝐻𝑗𝑘 
𝑖 𝑦𝑗 = − 𝐻𝑘𝑗 

𝑖 𝑦𝑗 = 𝐻𝑘  
𝑖  , 

b)   𝐻𝑗𝑘 = 𝐻𝑗𝑘𝑟
𝑟   , 

c)   𝐻𝑗 = 𝐻𝑗𝑟
𝑟    , 

d)   (𝑛 − 1)𝐻 = 𝐻𝑟  
𝑟  , 

e)   𝐻𝑟𝑘ℎ
𝑟 = 𝐻 ℎ𝑘 − 𝐻 𝑘ℎ    ,  and 

f)   𝑦𝑖𝐻𝑗   
𝑖 =  0   . 

These relations describe the contraction properties of the 

deviation tensor and establish the connections between 

the Ricci tensor, curvature vector, and scalar curvature 

within the Finsler geometric framework. The contracted 

tensor 𝐻𝑘ℎ (Ricci tensor), the curvature vector 𝐻𝑘 , and 

the scalar curvature 𝐻  are interrelated through the 

following relations, reflecting the intrinsic geometric 

properties of the Finsler space. 

(2.17)     a)   𝐻𝑘ℎ = 𝜕̇𝑘 𝐻ℎ   , 

b)   𝐻𝑘ℎ 𝑦
𝑘 = 𝐻ℎ   and 

c)  𝐻𝑘 𝑦
𝑘 = (𝑛 − 1) 𝐻  . 

The tensors 𝐻𝑗𝑘ℎ  
𝑖 and 𝐻𝑘ℎ 

𝑖  satisfy the subsequent 

identities, which ensure consistency within the h-

curvature framework. 

(2.18)     a)   𝐻𝑖𝑗𝑘ℎ = 𝑔𝑗𝑟  𝐻𝑖ℎ𝑘  
𝑟    , 

b)   𝐻𝑗𝑘.ℎ = 𝑔𝑗𝑟𝐻ℎ𝑘  
𝑟   , 

c)   𝑦𝑖𝐻ℎ𝑘
𝑖 = 0   , 

d)   𝐻𝑗𝑘ℎ
𝑖 + 𝐻ℎ𝑗𝑘

𝑖 + 𝐻𝑘ℎ𝑗
𝑖 = 0    . 

Furthermore, the necessary and sufficient condition for 

an n-dimensional Finsler space  𝐹𝑛(𝑛 > 2) to possess 

scalar curvature is expressed as: 

(2.19)     𝐻ℎ
𝑖 = 𝐹2 𝑅(𝛿ℎ

𝑖 − 𝑙𝑖𝑙ℎ)   , 

where 𝑅 denotes the scalar curvature, 𝛿ℎ
𝑖  is the Kronecker 

delta, and 𝑙𝑖 represents the unit vector in the direction of 

the tangent to the Finsler manifold. This condition 

provides a precise criterion for identifying scalar-

curvature Finsler spaces within the generalized geometric 

setting. 

Finally, the third Cartan curvature tensor 𝑅𝑗𝑘ℎ
𝑖  obeys the 

Bianchi identities and relates to the Berwald curvature 

via 

(2.20)     𝑅
𝑗𝑘ℎ׀𝑠
𝑖 + 𝑅

𝑗𝑠𝑘׀ℎ
𝑖 + 𝑅

𝑗ℎ𝑠׀𝑘
𝑖  

              +(𝑅𝑚ℎ𝑠
𝑟 𝑃𝑗𝑘𝑟

𝑖 + 𝑅𝑚𝑘ℎ
𝑟 𝑃𝑗𝑠𝑟

𝑖 + 𝑅𝑚𝑠𝑘
𝑟 𝑃𝑗ℎ𝑟

𝑖 )𝑦𝑚 = 0 . 

and this tensor satisfies the following relation too 

(2.21)     a)    𝑅𝑗𝑘ℎ
𝑖 = 𝐾𝑗𝑘ℎ

𝑖 + 𝐶𝑗𝑠
𝑖  𝐾𝑟ℎ𝑘 

𝑠 𝑦𝑟    ,  and 

b)    𝑅𝑖𝑗𝑘ℎ = 𝐾𝑖𝑗𝑘ℎ + 𝐶𝑖𝑗𝑠  𝐻𝑘ℎ 
𝑠   . 

The curvature tensor  𝐾𝑗𝑘ℎ  
𝑖  satisfies the following known 

as Bianchi identities 

(2.22)     𝐾𝑗𝑘ℎ
𝑖 + 𝐾ℎ𝑗𝑘

𝑖 + 𝐾𝑘ℎ𝑗
𝑖 = 0   ,  and 

(2.23)     𝐾𝑗𝑟𝑘ℎ + 𝐾ℎ𝑟𝑗𝑘 + 𝐾𝑘𝑟ℎ𝑗 = 0 

3. Necessary and Sufficient Condition for 

Generalized h-Recurrent 

In the study of Finsler geometry, recurrent structures 

provide a powerful framework for characterizing the 

behavior of curvature tensors under covariant 

differentiation. Among these, generalized recurrent 

conditions play a central role in extending classical 

results to broader settings. In particular, the concept of a 

generalized 𝐻ℎ-recurrent Finsler space arises when the 

Berwald curvature tensor satisfies a specific linear 

relation involving two non-null covariant vector fields. 

Such a structure, denoted by 𝐺-𝐻ℎ-R-𝐹𝑛, enables the 

systematic analysis of the interplay between curvature 

tensors, torsion tensors, and their associated contractions. 

This section develops the necessary and sufficient 

conditions for a Finsler space to be generalized 𝐻ℎ-

recurrent. By employing transvection operations and 

utilizing fundamental identities from earlier sections, we 

establish explicit relations for the covariant derivatives of 

the Berwald curvature tensor and its associated tensors. 

Furthermore, a sequence of theorems is presented, 

characterizing the precise conditions under which these 

tensors preserve h-recurrence. These results not only 

generalize existing recurrence conditions in Finsler 

geometry but also provide new insights into the structural 

properties of higher-order curvature tensors. 

Consider an n-dimensional Finsler space 𝐹𝑛 whose 

Berwald curvature tensor 𝐻𝑗𝑘ℎ 
𝑖 satisfies the relation 

(3.1)       𝐻
𝑗𝑘ℎ׀𝑙
𝑖 = 𝜆𝑙𝐻𝑗𝑘ℎ

𝑖 + 𝜇𝑙(𝛿ℎ
𝑖  𝑔𝑗𝑘 − 𝛿𝑘

𝑖  𝑔𝑗ℎ) 

              +
1

4
𝛿𝑙(𝐻ℎ

𝑖  𝑔𝑗𝑘– 𝐻𝑘
𝑖  𝑔𝑗ℎ)  ,   𝐻𝑗𝑘ℎ

𝑖 ≠ 0    , 

where 𝜆𝑙 , 𝜇𝑙 and 𝛿𝑙 are non-vanishing covariant vector 

fields. A Finsler space fulfilling this condition is referred 

to as a generalized 𝐻ℎ-recurrent Finsler space, denoted 

by G-𝐻ℎ-R-𝐹𝑛. 
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By contracting and transvecting this defining condition 

with suitable tensorial components, several equivalent 

forms of recurrence relations are obtained. These 

relations characterize the behavior of the Berwald 

curvature tensor, its associated torsion tensor, and the 

deviation tensor under h-covariant differentiation. As a 

result, a series of theorems are established, each 

providing the necessary and sufficient condition for these 

tensors to preserve the h-recurrence property. 

In particular, the analysis demonstrates how the 

recurrence of the Berwald curvature tensor and its 

associated tensors depends on the interaction between the 

covariant vectors 𝜆𝑙 , 𝜇𝑙 and 𝛿𝑙 and the underlying Finsler 

metric. The derived conditions not only generalize 

existing recurrence structures but also highlight new 

connections between higher-order curvature tensors 

within the broader framework of Finsler geometry. 

Now, let us consider a generalized  𝐻ℎ-recurrent Finsler 

space defined by the condition (3.1). 

By transvecting equation (3.1) with 𝑦𝑗, and making use 

of relations (2.8b), (2.14a), and (2.2a), we obtain a new 

form of the recurrence relation. 

(3.2)       𝐻
𝑘ℎ׀𝑙
𝑖 = 𝜆𝑙𝐻𝑘ℎ

𝑖 + 𝜇𝑙(𝛿ℎ
𝑖  𝑦𝑘 − 𝛿𝑘

𝑖  𝑦ℎ) 

              +
1

4
𝛿𝑙(𝐻ℎ

𝑖  𝑦𝑘– 𝐻𝑘
𝑖  𝑦ℎ)  . 

Furthermore, transvecting equation (3.2) with 𝑦𝑘, while 

applying (2.8b), (2.16a), (2.2b), and (2.1), leads to an 

additional expression. 

(3.3)       𝐻
ℎ׀𝑙
𝑖 = 𝜆𝑙𝐻ℎ

𝑖 + 𝜇𝑙(𝛿ℎ
𝑖 𝐹2 − 𝑦ℎ 𝑦

𝑖) 

               +
1

4
𝛿𝑙(𝐻ℎ

𝑖 𝐹2– 𝐻𝑘
𝑖  𝑦ℎ 𝑦

𝑘) . 

Similarly, transvecting equation (3.2) with 𝑔𝑖𝑝 , and 

employing (2.18b), (2.8a), and (2.1), we arrive at another 

equivalent condition. 

(3.4)       𝐻𝑘𝑝.ℎ׀𝑙 = 𝜆𝑙𝐻𝑘𝑝.ℎ + 𝜇𝑙(𝑔ℎ𝑝 𝑦𝑘 − 𝑔𝑘𝑝  𝑦ℎ) 

                +
1

4
𝛿𝑙 𝑔𝑖𝑝(𝐻ℎ

𝑖 𝐹2– 𝐻𝑘
𝑖  𝑦ℎ 𝑦

𝑘)  . 

Accordingly, we establish the following: 

Theorem 3.1. The h-covariant derivatives of the h(v)-

torsion tensor 𝐻𝑘ℎ 
𝑖 and the deviation tensor 𝐻ℎ 

𝑖  in a 

generalized 𝐻ℎ-recurrent Finsler space G-𝐻ℎ-R-𝐹𝑛 are 

expressed through conditions (3.2), (3.3), and (3.4), 

respectively. 

By differentiating equation (3.2) partially with respect to 

𝑦𝑗, and applying relations (2.14b), (2.14c), (2.2c), and 

(2.10b), together with the commutation formula given in 

(2.9) for the h(v)-torsion tensor 𝐻𝑗𝑘 
𝑖 , we obtain the 

following result: 

(3.5)  

𝐻
𝑗𝑘ℎ׀𝑙
𝑖 + 𝐻𝑘ℎ

𝑟 Γ𝑗𝑟𝑙
∗𝑖  – 𝐻𝑟ℎ

𝑖 Γ𝑗𝑘𝑙
∗𝑟  – 𝐻𝑘𝑟

𝑖 Γ𝑗ℎ𝑙
∗𝑟  – 𝐻𝑟𝑘ℎ

𝑖 𝑃𝑗𝑙
𝑟  

= (𝜕̇𝑗𝜆𝑙)𝐻𝑘ℎ
𝑖 + 𝜆𝑙𝐻𝑗𝑘ℎ

𝑖

+ (𝜕̇𝑗𝜇𝑙)(𝛿ℎ
𝑖  𝑦𝑘 − 𝛿𝑘

𝑖  𝑦ℎ)

+ 𝜇𝑙 (𝛿ℎ
𝑖  𝑔𝑗𝑘 − 𝛿𝑘

𝑖  𝑔𝑗ℎ )

+
1

4
(𝜕̇𝑗𝛿𝑙)(𝐻ℎ

𝑖  𝑦𝑘– 𝐻𝑘
𝑖  𝑦ℎ)

+
1

4
𝛿𝑙(𝐻𝑗ℎ

𝑖  𝑦𝑘– 𝐻𝑗𝑘
𝑖  𝑦ℎ). 

This shows that 

(3.6)        𝐻
𝑗𝑘ℎ׀𝑙
𝑖 = 𝜆𝑙𝐻𝑗𝑘ℎ

𝑖 + 𝜇𝑙(𝛿ℎ
𝑖  𝑔𝑗𝑘 − 𝛿𝑘

𝑖  𝑔𝑗ℎ) 

                 +
1

4
𝛿𝑙(𝐻𝑗ℎ

𝑖  𝑦𝑘– 𝐻𝑗𝑘
𝑖  𝑦ℎ)   . 

If and only if 

 (3.7)        𝐻𝑘ℎ
𝑟 Γ𝑗𝑟𝑙

∗𝑖 − 𝐻𝑟ℎ
𝑖 Γ𝑗𝑘𝑙

∗𝑟 − 𝐻𝑘𝑟
𝑖 Γ𝑗ℎ𝑙

∗𝑟 − 𝐻𝑟𝑘ℎ
𝑖 P𝑗𝑙

𝑟  

                = (𝜕̇𝑗𝜆𝑙)𝐻𝑘ℎ
𝑖 + (𝜕̇𝑗𝜇𝑙)(𝛿ℎ

𝑖  𝑦𝑘 − 𝛿𝑘
𝑖  𝑦ℎ) 

                 +
1

4
(𝜕̇𝑗𝛿𝑙)(𝐻ℎ

𝑖  𝑦𝑘– 𝐻𝑘
𝑖  𝑦ℎ)  .    

Thus, we conclude 

Theorem 3.2. In a G-𝐻ℎ-R-𝐹𝑛, the Berwald curvature 

tensor 𝐻𝑗𝑘ℎ 
𝑖 is h-recurrent provided that condition (3.7) is 

satisfied. 

By transvecting condition (3.5) with 𝑔𝑖𝑝  , and making 

use of (2.8a), (2.18a), and (2.1), we arrive at the 

following: 

(3.8) 

 𝐻𝑗𝑝𝑘ℎ׀𝑙 + 𝑔𝑖𝑝 [𝐻𝑘ℎ
𝑟 Γ𝑗𝑟𝑙

∗𝑖 − 𝐻𝑟ℎ
𝑖 Γ𝑗𝑘𝑙

∗𝑟 − 𝐻𝑘𝑟 
𝑖 Γ𝑗ℎ𝑙

∗𝑟 − 𝐻𝑟𝑘ℎ
𝑖 𝑃𝑗𝑙

𝑟] 

= 𝜆𝑙𝐻𝑗𝑝𝑘ℎ + 𝑔𝑖𝑝 [(𝜕̇𝑗𝜆𝑙)𝐻𝑘ℎ
𝑖 + (𝜕̇𝑗𝜇𝑙)(𝛿ℎ

𝑖  𝑦𝑘 − 𝛿𝑘
𝑖  𝑦ℎ)]

+ 𝜇𝑙(𝑔𝑗𝑘 𝑔ℎ𝑝 − 𝑔𝑗ℎ  𝑔𝑘𝑝) 

+
1

4
(𝜕̇𝑗𝛿𝑙)(𝐻ℎ

𝑖  𝑦𝑘– 𝐻𝑘
𝑖  𝑦ℎ) 𝑔𝑖𝑝 +

1

4
𝛿𝑙(𝐻𝑗ℎ

𝑖  𝑦𝑘– 𝐻𝑗𝑘
𝑖  𝑦ℎ) 𝑔𝑖𝑝   

This shows that 

(3.9)        𝐻𝑗𝑝𝑘ℎ׀𝑙 = 𝜆𝑙  𝐻𝑗𝑝𝑘ℎ + 𝜇𝑙(𝑔𝑗𝑘  𝑔ℎ𝑝 − 𝑔𝑗ℎ  𝑔𝑘𝑝 ) 

                +
1

4
𝛿𝑙(𝐻𝑗ℎ

𝑖  𝑦𝑘– 𝐻𝑗𝑘
𝑖  𝑦ℎ) 𝑔𝑖𝑝   . 

If and only if 

(3.10)      𝐻𝑘ℎ
𝑟 Γ𝑗𝑟𝑙

∗𝑖 − 𝐻𝑟ℎ
𝑖 Γ𝑗𝑘𝑙

∗𝑟 − 𝐻𝑘𝑟 
𝑖 Γ𝑗ℎ𝑙

∗𝑟 − 𝐻𝑟𝑘ℎ 
𝑖 P𝑗𝑙

𝑟  

= (𝜕̇𝑗𝜆𝑙)𝐻𝑘ℎ
𝑖 + (𝜕̇𝑗𝜇𝑙)(𝛿ℎ

𝑖  𝑦𝑘 − 𝛿𝑘
𝑖  𝑦ℎ) 

               +
1

4
(𝜕̇𝑗𝛿𝑙)(𝐻ℎ

𝑖  𝑦𝑘– 𝐻𝑘
𝑖  𝑦ℎ).  

Thus, we conclude 

Theorem 3.3. In a G-𝐻ℎ-R-𝐹𝑛 , the associate tensor 

𝐻𝑗𝑝𝑘ℎ of the Berwald curvature tensor 𝐻𝑗𝑘ℎ
𝑖  is h-recurrent 

if and only if condition (3.10) holds. 
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By contracting the indices i and h in condition (3.5), and 

using relations (2.16b), (2.16d), (2.16f), (2.16c) and 

(2.18c), we obtain: 

(3.11)         𝐻𝑗𝑘׀𝑙 + 𝐻𝑘𝑝
𝑟 Γ𝑗𝑟𝑙

∗𝑝
− 𝐻𝑟Γ𝑗𝑘𝑙

∗𝑟 − 𝐻𝑘𝑟
𝑝

Γ𝑗𝑝𝑙
∗𝑟  

               −𝐻𝑟𝑘𝑃𝑗𝑙
𝑟  = 𝜆𝑙𝐻𝑗𝑘 + (𝜕̇𝑗𝜆𝑙)𝐻𝑘 

               +(𝑛 − 1)(𝜕̇𝑗𝜇𝑙)𝑦𝑘 + (𝑛 − 1)𝜇𝑙𝑔𝑗𝑘 

               +
1

4
(𝑛 − 1)(𝜕̇𝑗𝛿𝑙)(𝐻𝑦𝑘) +

1

4
𝛿𝑙(𝐻𝑗𝑦𝑘) . 

This shows that 

(3.12)     𝐻𝑗𝑘׀𝑙 = 𝜆𝑙𝐻𝑗𝑘 + (𝑛 − 1) 𝜇𝑙𝑔𝑗𝑘 +
1

4
𝛿𝑙(𝐻𝑗𝑦𝑘)  . 

If and only if 

(3.13)      𝐻𝑘𝑝
𝑟 Γ𝑗𝑟𝑙

∗𝑝
− 𝐻𝑟Γ𝑗𝑘𝑙

∗𝑟 − 𝐻𝑘𝑟
𝑝

Γ𝑗𝑝𝑙
∗𝑟 − 𝐻𝑟𝑘P𝑗𝑙

𝑟  

                = (𝜕̇𝑗𝜆𝑙)𝐻𝑘 + (𝑛 − 1)(𝜕̇𝑗𝜇𝑙)𝑦𝑘 

                +
1

4
(𝑛 − 1)(𝜕̇𝑗𝛿𝑙)(𝐻𝑦𝑘) . 

Thus, we conclude 

Theorem 3.4. In a G-𝐻ℎ-R-𝐹𝑛 , the associate tensor 𝐻𝑗𝑘 

of the Berwald curvature tensor 𝐻𝑗𝑘ℎ
𝑖  is h-recurrent if and 

only if condition (3.13) is satisfied. 

By contracting the indices i and j in equation (3.5), and 

applying (2.16e), (2.16c) and (2.1), we derive the 

following: 

(3.14)      (𝐻ℎ𝑘 − 𝐻𝑘ℎ)׀𝑙 + 𝐻𝑘ℎ
𝑟 Γ𝑝𝑟𝑙

∗𝑝
− 𝐻𝑟ℎ

𝑝
Γ𝑝𝑘𝑙

∗𝑟  

−𝐻𝑘𝑟
𝑝

Γ𝑝ℎ𝑙
∗𝑟 − 𝐻𝑟𝑘ℎ

𝑝
𝑃𝑝𝑙

𝑟  = 𝜆𝑙(𝐻ℎ𝑘 − 𝐻𝑘ℎ) 

+(𝜕̇𝑝𝜆𝑙) 𝐻𝑘ℎ
𝑝

+ (𝜕̇𝑝𝜇𝑙)(𝛿ℎ
𝑝

𝑦𝑘 − 𝛿𝑘
𝑝

𝑦ℎ) 

               +
1

4
(𝜕̇𝑝𝛿𝑙)(𝐻ℎ

𝑝
𝑦𝑘– 𝐻𝑘

𝑝
𝑦ℎ) +

1

4
𝛿𝑙(𝐻ℎ𝑦𝑘– 𝐻𝑘𝑦ℎ). 

This shows that 

(3.15)     (𝐻ℎ𝑘 − 𝐻𝑘ℎ)׀𝑙 = 𝜆𝑙(𝐻ℎ𝑘 − 𝐻𝑘ℎ)   . 

If and only if 

(3.16)     𝐻𝑘ℎ 
𝑟 Γ𝑝𝑟𝑙

∗𝑝
− 𝐻𝑟ℎ 

𝑝
Γ𝑝𝑘𝑙

∗𝑟 − 𝐻𝑘𝑟 
𝑝

Γ𝑝ℎ𝑙
∗𝑟 − 𝐻𝑟𝑘ℎ 

𝑝
𝑃𝑝𝑙

𝑟  

                 = (𝜕̇𝑝𝜆𝑙) 𝐻𝑘ℎ
𝑝

+ (𝜕̇𝑝 𝜇𝑙)(𝛿ℎ
𝑝

 𝑦𝑘 − 𝛿𝑘
𝑝

 𝑦ℎ) 

                +
1

4
(𝜕̇𝑝𝛿𝑙)(𝐻ℎ

𝑝
𝑦𝑘– 𝐻𝑘

𝑝
𝑦ℎ) +

1

4
𝛿𝑙(𝐻ℎ𝑦𝑘– 𝐻𝑘𝑦ℎ). 

Thus, we conclude 

Theorem 3.5. In a G-𝐻ℎ-R-𝐹𝑛 , the associate tensor 

(𝐻ℎ𝑘 − 𝐻𝑘ℎ) of the Berwald curvature tensor 𝐻𝑗𝑘ℎ 
𝑖  is h-

recurrent if and only if condition (3.16) holds. 

Next, by differentiating equation (3.3) partially with 

respect to  𝑦𝑘, and applying (2.14c), (2.2d), (2.2a), 

(2.2c), and (2.2e), together with the commutation 

formula given in (2.9) for the h(v)-torsion tensor 𝐻ℎ 
𝑖 ,  we 

obtain an additional relation. 

(3.17)      𝐻
𝑘ℎ׀𝑙
𝑖 + 𝐻ℎ 

𝑟 Γ𝑘𝑟𝑙
∗𝑖 − 𝐻𝑟 

𝑖 Γ𝑘ℎ𝑙
∗𝑟 − 𝐻𝑟ℎ 

𝑖 𝑃𝑘𝑙
𝑟  

                = (𝜕̇𝑘𝜆𝑙)𝐻ℎ
𝑖 + 𝜆𝑙𝐻𝑘ℎ

𝑖 + (𝜕̇𝑘𝜇𝑙)(𝛿ℎ
𝑖 𝐹2 − 𝑦ℎ 𝑦

𝑖) 

                +𝜇𝑙 (2𝛿ℎ
𝑖  𝑦𝑘 − 𝑔𝑘ℎ𝑦  𝑖 − 𝛿𝑘

𝑖  𝑦ℎ) 

                +
1

4
(𝜕̇𝑘𝛿𝑙)(𝐻ℎ

𝑖 𝐹2– 𝐻𝑘
𝑖  𝑦ℎ 𝑦

𝑘) 

                +
1

4
𝛿𝑙(𝐻ℎ𝑘

𝑖 𝐹2– 𝐻𝑘
𝑖  𝑦ℎ) . 

Furthermore, interchanging the indices k and h in 

condition (3.17), and subtracting the resulting equation 

from (3.17), yields a refined expression that further 

characterizes the recurrence structure. 

(3.18)     

(𝜕̇𝑘𝐻ℎ
𝑖 − 𝜕̇ℎ𝐻𝑘 

𝑖 )
𝑙׀

+ [ 𝐻ℎ
𝑟Γ𝑘𝑟𝑙

∗𝑖 − 𝐻𝑟 
𝑖 Γ𝑘ℎ𝑙

∗𝑟 − 𝐻𝑟ℎ
𝑖 𝑃𝑘𝑙

𝑟

− 𝐻𝑘
𝑟Γℎ𝑟𝑙

∗𝑖 + 𝐻𝑟 
𝑖 Γℎ𝑘𝑙

∗𝑟 + 𝐻𝑟𝑘 
𝑖 𝑃ℎ𝑙

𝑟 ]

= 𝜆𝑙 (𝜕̇𝑘𝐻ℎ 
𝑖 − 𝜕̇ℎ𝐻𝑘

𝑖 )

+ 3 𝜇𝑙(𝛿ℎ
𝑖  𝑦𝑘 − 𝛿𝑘

𝑖  𝑦ℎ)

+ [(𝜕̇𝑘𝜆𝑙)𝐻ℎ 
𝑖 + (𝜕̇𝑘𝜇𝑙)(𝛿ℎ

𝑖 𝐹2 − 𝑦ℎ𝑦𝑖)

− (𝜕̇ℎ𝜆𝑙)𝐻𝑘
𝑖 − (𝜕̇ℎ𝜇𝑙)(𝛿𝑘

𝑖  𝐹2 − 𝑦𝑘  𝑦𝑖)]

+
1

4
(𝜕̇𝑘𝛿𝑙)(𝐻ℎ

𝑖 𝐹2– 𝐻𝑘
𝑖  𝑦ℎ 𝑦

𝑘)

+
1

4
𝛿𝑙(𝐻ℎ𝑘

𝑖 𝐹2– 𝐻𝑘
𝑖  𝑦ℎ). 

4. Special Generalized 𝑯𝒉-Recurrent Finsler 

Spaces 

In this section, we investigate several special cases of 

generalized 𝐻ℎ-recurrent Finsler spaces that play an 

essential role in the structural study of Finsler geometry. 

We begin with the case of affinely connected spaces 

(Berwald spaces), where the connection parameters 

become independent of the directional arguments, 

leading to simplified recurrence relations for the Berwald 

curvature tensor and its associated tensors. Subsequently, 

we consider P2-like generalized 𝐻ℎ-recurrent spaces, 

which are characterized by specific relations involving 

the torsion tensors and curvature identities. Finally, we 

address the P*-generalized 𝐻ℎ-recurrent spaces, 

highlighting their connections with P2-like spaces and 

the recurrence conditions imposed on their torsion 

tensors. These subclasses provide deeper insights into the 

geometry of generalized recurrent Finsler spaces and 

demonstrate how particular structural assumptions lead to 

distinct forms of curvature recurrence. 

4a. A Generalized 𝑯𝒉-Recurrent Affinely Connected 

Space 

A Finsler space 𝐹𝑛 in which the connection coefficients 

𝐺𝑗𝑘
𝑖  are independent of the directional arguments 𝑦𝑖  is 

referred to as an affinely connected space or Berwald 

space. Consequently, an affinely connected Finsler space 

can be equivalently characterized by any of the following 

conditions: 
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(4a.1)     a)   𝐺𝑗𝑘ℎ
𝑖 = 0     and     b)   𝐶(𝑖𝑗𝑘|ℎ) = 0   . 

In such a space, the connection parameters of Cartan, 

Γ𝑘ℎ
∗𝑖  , coincide with the Berwald connection coefficients 

𝐺𝑘ℎ
𝑖  and are independent of the directional arguments, 

i.e., 

(4a.2)     a)    𝜕̇𝑗𝐺𝑘ℎ
𝑖 = 0    and    b)   𝜕̇𝑗 Γ𝑘ℎ

∗𝑖 = 0    . 

Definition 4.1. A generalized 𝐻ℎ-recurrent Finsler space 

FnF_nFn is termed an affinely connected generalized 

𝐻ℎ-recurrent Finsler space if it satisfies at least one of 

the conditions (4a.1a), (4a.1b), (4a.2a), or (4a.2b). Such a 

space is denoted concisely as G-𝐻ℎ-R-𝐹𝑛 affinely 

connected space. 

Now, consider a G-𝐻ℎ-R-𝐹𝑛 space that is affinely 

connected. If the directional derivatives of the covariant 

vector fields vanish, i.e., 𝜕̇𝑗𝜆𝑙 = 0 , 𝜕̇𝑗𝜇𝑙 = 0   and 𝜕̇𝑗𝛿𝑙 =

0, then in view of condition (4a.2b), equation (3.5) 

reduces to: 

(4a.3)     𝐻
𝑗𝑘ℎ׀𝑙
𝑖 = 𝜆𝑙𝐻𝑗𝑘ℎ

𝑖 + 𝐻𝑟𝑘ℎ 
𝑖 𝑃𝑗𝑙

𝑟  

              +𝜇𝑙(𝛿ℎ
𝑖 𝑔𝑗𝑘 −  𝛿𝑘

𝑖 𝑔𝑗ℎ) +
1

4
𝛿𝑙(𝐻𝑗ℎ

𝑖  𝑦𝑘– 𝐻𝑗𝑘
𝑖  𝑦ℎ). 

Thus, we conclude 

Theorem 4a.1. In a G-𝐻ℎ-R-𝐹𝑛 affinely connected space, 

if the directional derivatives of the first-order covariant 

tensor fields vanish, then the Berwald curvature tensor 

 𝐻𝑗𝑘ℎ
𝑖  is h-recurrent. 

Assume now that a G-𝐻ℎ-R-𝐹𝑛 space is affinely 

connected and that 𝜕̇𝑗𝜆𝑙 = 0 , 𝜕̇𝑗𝜇𝑙 = 0  and 

𝜕̇𝑗𝛿𝑙 = 0. Under these conditions, in view of (4a.2b) and 

using (2.18a), equation (3.8) reduces to 

(4a.4)      𝐻𝑗𝑝𝑘ℎ׀𝑙 = 𝜆𝑙𝐻𝑗𝑝𝑘ℎ + 𝐻𝑟𝑝𝑘ℎ𝑃𝑗𝑙
𝑟  

           +𝜇𝑙(𝑔𝑗𝑘𝑔ℎ𝑝 − 𝑔𝑗ℎ𝑔𝑘𝑝) +
1

4
𝛿𝑙(𝐻𝑗ℎ

𝑖 𝑦𝑘– 𝐻𝑗𝑘
𝑖 𝑦ℎ)𝑔𝑖𝑝 . 

Thus, we conclude 

Theorem 4a.2. In such a space, if the directional 

derivatives of the first-order covariant tensor fields 

vanish, then the associated tensor 𝐻𝑗𝑝𝑘ℎ is h-recurrent. 

Similarly, for the same affinely connected space with 

𝜕̇𝑗𝜆𝑙 = 0 , 𝜕̇𝑗𝜇𝑙 = 0   and 𝜕̇𝑗𝛿𝑙 = 0 , equation (3.11) 

reduces to 

(4a.5)      𝐻𝑗𝑘׀𝑙 = 𝜆𝑙𝐻𝑗𝑘 + 𝐻𝑟𝑘𝑃𝑗𝑙
𝑟   

              +(𝑛 − 1) 𝜇𝑙  𝑔𝑗𝑘 +
1

4
𝛿𝑙(𝐻𝑗𝑦𝑘)  . 

Thus, we conclude 

Theorem 4a.3. Under these conditions, the Ricci tensor 

𝐻𝑗𝑘 of the Berwald curvature tensor 𝐻𝑗𝑘ℎ
𝑖  is h-recurrent. 

Considering the affinely connected space G-𝐻ℎ-R-𝐹𝑛 and 

assuming   𝜕̇𝑗𝜆𝑙 = 0 , 𝜕̇𝑗𝜇𝑙 = 0  and   𝜕̇𝑗𝛿𝑙 = 0 , equation 

(3.14) reduces to 

(4a.6)   (𝐻ℎ𝑘 − 𝐻𝑘ℎ)׀𝑙 = 𝜆𝑙(𝐻ℎ𝑘 − 𝐻𝑘ℎ) 

            +𝐻𝑟𝑘ℎ 
𝑝

𝑃𝑝𝑙
𝑟 +

1

4
𝛿𝑙(𝐻ℎ𝑦𝑘– 𝐻𝑘𝑦ℎ)  . 

Thus, we conclude 

Theorem 4a.4.  In this case, the tensor (𝐻ℎ𝑘 − 𝐻𝑘ℎ) is h-

recurrent. 

Similarly, under the same assumptions, equation (3.17) 

reduces to 

(4a.7)     𝐻
𝑘ℎ׀𝑙
𝑖 = 𝜆𝑙𝐻𝑘ℎ

𝑖 + 𝐻𝑟ℎ 
𝑖 𝑃𝑘𝑙

𝑟  

               + 𝜇𝑙 (2𝛿ℎ
𝑖  𝑦𝑘 − 𝑔𝑘ℎ 𝑦

 𝑖 − 𝛿𝑘
𝑖 𝑦ℎ) 

               + 
1

4
𝛿𝑙(𝐻ℎ𝑘

𝑖 𝐹2– 𝐻𝑘
𝑖 𝑦ℎ)  . 

Thus, we conclude 

Theorem 4a.5.  Thus, the h(v)-torsion tensor 𝐻𝑘ℎ 
𝑖  is h-

recurrent. 

Transvecting the above equation by 𝑦𝑘 and using 

standard relations (2.16a), (2.16f), (2.8b), (2.10c), (2.2b), 

(2.2a) and (2.1), we obtain 

(4a.8)     𝐻
ℎ׀𝑙
𝑖 = 𝜆𝑙𝐻ℎ

𝑖 + 2𝜇𝑙 (𝛿ℎ
𝑖 𝐹2 − 𝑦ℎ 𝑦

 𝑖) 

               +
1

4
𝛿𝑙(𝐻ℎ

𝑖 𝐹2)  . 

Contracting indices i  and  h , one gets 

(4a.9)      𝐻׀𝑙 = 𝜆𝑙𝐻 + 2 𝜇𝑙𝐹
2 +

1

4
(𝑛 − 1)𝛿𝑙(𝐻𝐹2)  . 

Trausvecting (4a.7) by 𝑔𝑖𝑝  , using equations (2.18b), 

(2.8a), (2.1) and (2.2a), we get 

(4a.10)     𝐻𝑘𝑝.ℎ׀𝑙 = 𝜆𝑙𝐻𝑘𝑝.ℎ + 𝐻𝑟𝑝.ℎ𝑃𝑘𝑙
𝑟  

                + 𝜇𝑙(2𝑔ℎ𝑝𝑦𝑘 − 𝑔𝑘ℎ𝑦𝑝 − 𝑔𝑘𝑝𝑦ℎ) 

                +
1

4
𝛿𝑙(𝐻𝑘𝑝.ℎ𝐹2– 𝐻𝑘

𝑖 𝑦ℎ𝑔𝑖𝑝)  . 

Thus, we conclude 

Theorem 4a.6. Hence, in an affinely connected G-𝐻ℎ-R-

𝐹𝑛 space with vanishing directional derivatives of the 

first-order covariant tensor fields, the deviation tensor 

𝐻ℎ 
𝑖 , the scalar curvature 𝐻 , and the associated tensor 

𝐻𝑘𝑝.ℎ  of the Berwald curvature tensor 𝐻𝑗𝑘ℎ
𝑖  are h-

recurrent. 

Finally, assuming  𝜕̇𝑗𝜆𝑙 = 0 , 𝜕̇𝑗𝜇𝑙 = 0  and 𝜕̇𝑗𝛿𝑙 = 0  , 

equation (3.18) reduces to 

(4a.11)    (𝜕̇𝑘𝐻ℎ
𝑖 − 𝜕̇ℎ𝐻𝑘

𝑖 )
𝑙׀

= 𝜆𝑙 (𝜕̇𝑘𝐻ℎ
𝑖 − 𝜕̇ℎ𝐻𝑘 

𝑖 ) 

               +3𝜇𝑙(𝛿ℎ 
𝑖 𝑦𝑘 − 𝛿𝑘 

𝑖 𝑦ℎ) + 𝐻𝑟ℎ
𝑖 𝑃𝑘𝑙

𝑟 − 𝐻𝑟𝑘
𝑖 𝑃ℎ𝑙

𝑟  
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                 +
1

4
𝛿𝑙(𝐻ℎ𝑘

𝑖 𝐹2– 𝐻𝑘
𝑖 𝑦ℎ)  . 

Thus, we conclude 

Theorem 4a.7. Accordingly, the tensor (𝜕̇𝑘𝐻ℎ 
𝑖 − 𝜕̇ℎ𝐻𝑘

𝑖 ) 

is h-recurrent. 

4b. P2- like a Generalized 𝑯𝒉-Recurrent Space 

P2-like Finsler spaces represent an important subclass of 

generalized 𝐻ℎ-recurrent spaces, characterized by 

specific algebraic relations between their torsion and 

curvature tensors. These spaces provide a natural 

generalization of P*-Finsler structures, allowing the 

study of recurrence properties of higher-order curvature 

tensors and their associated tensors under specific 

directional derivatives. 

In particular, P2-like spaces facilitate the analysis of the 

interplay between Berwald curvature and hv-torsion 

tensors, offering deeper insight into the geometric 

structure of affinely connected Finsler spaces. 

Definition and Fundamental Relations: 

A P2-like space is defined by the condition 

 𝑃𝑗𝑘ℎ
𝑖 = ∅𝑗𝐶𝑘ℎ

𝑖 − ∅𝑖𝐶𝑗𝑘ℎ   , where  ∅𝑗  and  ∅𝑖 are non-zero 

covariant and contravariant vector fields, respectively. 

Such a P2-like space is necessarily a P*-Finsler space, 

characterized by 

(4b.2)       𝑃𝑘ℎ
𝑖 = ∅ 𝐶𝑘ℎ

𝑖    ,  where 

   𝑃𝑗𝑘ℎ 
𝑖 𝑦𝑗 = 𝑃𝑘ℎ

𝑖 = 𝐶
(𝑘ℎ|𝑠 )
𝑖 𝑦𝑠 . 

Geometric Identities: 

For a P2-like generalized 𝐻ℎ-recurrent space G-𝐻ℎ-R-𝐹𝑛 

, combining equations (4b.1), (4b.2), and the identity 

(2.20), we obtain 

(4b.3)     𝑅
𝑗𝑘ℎ׀𝑠
𝑖 + 𝑅

𝑗𝑠𝑘׀ℎ
𝑖 + 𝑅

𝑗ℎ𝑠׀𝑘
𝑖  

             +∅𝑗(𝐻ℎ𝑠
𝑟 𝐶𝑘𝑟

𝑖 + 𝐻𝑘ℎ
𝑟 𝐶𝑠𝑟

𝑖 + 𝐻𝑠𝑘
𝑟 𝐶ℎ𝑟

𝑖 ) 

              − ∅𝑖(𝐻ℎ𝑠
𝑟 𝐶𝑗𝑘𝑟 + 𝐻𝑘ℎ

𝑟 𝐶𝑗𝑠𝑟 + 𝐻𝑠𝑘
𝑟 𝐶𝑗ℎ𝑟) = 0  . 

Applying the relevant conditions (2.21a), (2.22), (2.21b), 

and (2.23), this simplifies to 

          𝑅
𝑗𝑘ℎ׀𝑠
𝑖 + 𝑅

𝑗𝑠𝑘׀ℎ
𝑖 + 𝑅

𝑗ℎ𝑠׀𝑘
𝑖 + ∅𝑗(𝑅ℎ𝑠𝑘

𝑖 + 𝑅𝑘ℎ𝑠
𝑖 + 𝑅𝑠𝑘ℎ

𝑖 ) 

              −∅𝑖(𝑅𝑗𝑠𝑘ℎ + 𝑅𝑗ℎ𝑠𝑘 + 𝑅𝑗𝑘ℎ𝑠) = 0  . 

Transvecting the above by 𝑔𝑖𝑝 and using 𝑔𝑖𝑝𝑅ℎ𝑠𝑘
𝑖 =

𝑅𝑗𝑠𝑘ℎ and 𝑔𝑖𝑝∅𝑖 = ∅𝑝, and then further contracting with 

𝑦𝑗  , we obtain 

(4b.4)      𝑅𝑗𝑝𝑘ℎ׀𝑠 + 𝑅𝑗𝑝𝑠𝑘׀ℎ + 𝑅𝑗𝑝ℎ𝑠׀𝑘 

               +∅𝑗(𝑅ℎ𝑝𝑠𝑘 + 𝑅𝑘𝑝ℎ𝑠 + 𝑅𝑠𝑝𝑘ℎ) 

               −∅𝑝(𝑅𝑗𝑠𝑘ℎ + 𝑅𝑗ℎ𝑠𝑘 + 𝑅𝑗𝑘ℎ𝑠) = 0  . 

Transvecting the above by 𝑦𝑗, we obtain 

(4b.5)       𝐻𝑝𝑘.ℎ׀𝑠 + 𝐻𝑝𝑠.𝑘׀ℎ + 𝐻𝑝ℎ.𝑠׀𝑘 

                + ∅(𝑅ℎ𝑝𝑠𝑘 + 𝑅𝑘𝑝ℎ𝑠 + 𝑅𝑠𝑝𝑘ℎ) 

                − ∅𝑝(𝐻𝑠𝑘.ℎ + 𝐻ℎ𝑠.𝑘 + 𝐻𝑘ℎ.𝑠) = 0  , 

where   𝑅𝑗𝑝𝑘ℎ 𝑦𝑗 =  𝐻𝑝𝑘.ℎ  and   ∅𝑗  𝑦𝑗 = ∅   . 

Differentiating equation (2.18c) with respect to 𝑦𝑗 and 

taking the skew-symmetric part over the indices j, k, h, 

we obtain 

(4b.6)      𝑔𝑖𝑗𝐻ℎ𝑘
𝑖 + 𝑦𝑖 𝐻ℎ𝑘

𝑖 = 0   . 

Taking skew-symmetric part of (4b.6) with respect to the 

indices j , k and h , using (2.18d) and using (2.18b), we 

get 

(4b.7)      𝐻ℎ𝑗.𝑘 + 𝐻𝑗𝑘.ℎ + 𝐻𝑘ℎ.𝑗 = 0    . 

putting equation (4b.7) in equation (4b.5), we get 

(4b.8)       𝐻𝑝𝑘.ℎ׀𝑠 + 𝐻𝑝𝑠.𝑘׀ℎ + 𝐻𝑝ℎ.𝑠׀𝑘 

                +∅(𝑅ℎ𝑝𝑠𝑘 + 𝑅𝑘𝑝ℎ𝑠 + 𝑅𝑠𝑝𝑘ℎ) = 0   . 

Finally, using the generalized 𝐻ℎ-recurrent condition 

(3.4), we get 

(4b.9)      𝜆𝑠𝐻𝑝𝑘.ℎ + 𝜆ℎ𝐻𝑝𝑠.𝑘 + 𝜆𝑘𝐻𝑝ℎ.𝑠 

                +𝜇𝑠(𝑔ℎ𝑘 𝑦𝑝 – 𝑔𝑝𝑘 𝑦ℎ) + 𝜇ℎ(𝑔𝑘𝑠 𝑦𝑝 − 𝑔𝑝𝑠 𝑦𝑘) 

        + 𝜇𝑘(𝑔𝑠ℎ𝑦𝑝  – 𝑔𝑝ℎ𝑦𝑠) + ∅(𝑅ℎ𝑝𝑠𝑘 + 𝑅𝑘𝑝ℎ𝑠 + 𝑅𝑠𝑝𝑘ℎ) 

               +
1

4
𝛿𝑙  𝑔𝑖𝑝(𝐻ℎ

𝑖 𝐹2– 𝐻𝑘
𝑖  𝑦ℎ 𝑦

𝑘) = 0   . 

Thus, we conclude 

Theorem 4b.1.  In a P2-like G-𝐻ℎ-R-𝐹𝑛 space, the 

identities above (4b.8) and (4b.9), are satisfied. 

We have the definition of a P2-like G-𝐻ℎ-R-𝐹𝑛  as 

following 

Definition 4b.1. A generalized 𝐻ℎ-recurrent Finsler 

space 𝐹𝑛 is called P2-like if it satisfies condition (4b.1). 

Such a space is denoted briefly as P2-like G-𝐻ℎ-R-𝐹𝑛 . 

4c. 𝑷∗- Generalized 𝑯𝒉-Recurrent Space 

The notion of a P*-Finsler space provides a natural 

generalization of P2-like structures in Finsler geometry. 

Such spaces are characterized by a special relation 

between the hv-torsion tensor and the projective tensor, 

leading to simplified identities that play a crucial role in 

the study of recurrent and affinely connected spaces. 

Extending this framework to generalized 𝐻ℎ-recurrent 

settings allow us to establish deeper connections between 

hv-torsion tensors, recurrence conditions, and curvature 

relations within Finsler spaces. 

Definition and Properties: 

A P*-Finsler space is defined by the condition 
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(4c.1)     𝑃𝑘ℎ
𝑖 = 𝐶

(𝑘ℎ|𝑗)
𝑖 𝑦𝑗 = ∅ 𝐶𝑘ℎ

𝑖    ,   ∅ ≠ 0   , where 

denoted  ∅  by  𝜆 . 

Remark 4c.1. Every P2-like space is a P*-Finsler space, 

characterized equivalently by 

(4c.2)     𝑃𝑘ℎ
𝑖 = ∅ 𝐶𝑘ℎ

𝑖    . 

Where    𝑃𝑗𝑘ℎ
𝑖 𝑦𝑗 = 𝑃𝑘ℎ

𝑖 = 𝐶
(𝑘ℎ|𝑗 )
𝑖 𝑦𝑗  . 

Definition 4c.1. A generalized 𝐻ℎ-recurrent space is 

called a P*-generalized 𝐻ℎ-recurrent Finsler space if it 

satisfies condition (4c.1). Such a space is denoted by P*- 

G-𝐻ℎ-R-𝐹𝑛 . 

h-Covariant Derivative Relations: 

Taking the h-covariant derivative of equation (4c.1) with 

respect to 𝑥𝑙 in the sense of Cartan’s second kind, we 

obtain 

(4c.3)     𝑃
(𝑘ℎ|𝑙)
𝑖 = ∅ 𝐶

(𝑘ℎ|𝑙)
𝑖 + ∅

( |𝑙) 𝐶𝑘ℎ
𝑖    . 

If the (v) hv-torsion tensor 𝐶𝑘ℎ
𝑖  is h-recurrent, i.e., 

(4c.4)     𝑃
(𝑘ℎ|𝑙)
𝑖 = 𝑏𝑙∅ 𝐶𝑘ℎ

𝑖 + ∅
( |𝑙)𝐶𝑘ℎ

𝑖    . 

Putting equation (4c.1) in (4c.4), then the above relation 

reduces to 

(4c.5)     𝑃
(𝑘ℎ|𝑙)
𝑖 = 𝑏𝑙𝑃𝑘ℎ

𝑖 + ∅
( |𝑙)𝐶𝑘ℎ

𝑖    , 

This further implies 

(4c.6)     𝑃
(𝑘ℎ|𝑙)
𝑖 = 𝑏𝑙𝑃𝑘ℎ

𝑖   , 

if and only if 

(4c.7)     ∅
( |𝑙) 𝐶𝑘ℎ

𝑖 = 0   . 

Thus, we conclude 

Theorem 4c.1. In a P*-generalized 𝐻ℎ-recurrent Finsler 

space P*-G-𝐻ℎ-R-𝐹𝑛, the v(hv)-torsion tensor 𝑃𝑘ℎ
𝑖  is h-

recurrent, provided that the (v) hv-torsion tensor 𝐶𝑘ℎ
𝑖  is h-

recurrent, if and only if condition (4c.7) is satisfied. 

5. Application of Generalized 𝑯𝒉-Recurrent 

Finsler Spaces in Image Processing 

The theoretical results obtained in this paper, particularly 

Theorems 3.1, 3.2, and 4a.3, establish recurrence 

relations for Cartan’s h-curvature tensor 𝐻𝑗𝑘ℎ
𝑖   and their 

generalizations in 𝐺-𝐻ℎ-R-𝐹𝑛. These relations provide 

structural constraints on the geometric quantities of 

Finsler spaces, which can be exploited in practical 

contexts where anisotropy and direction-dependent 

features play a central role. A prominent example of such 

a context is digital image processing, where edge 

detection, noise suppression, and texture analysis require 

anisotropic metrics that go beyond the Euclidean 

framework. 

5.1. Finsler Metric for Images 

Let an image be represented by a grayscale intensity 

function 𝐼(𝑥, 𝑦) defined on a 2D domain. We introduce a 

Finslerian metric of the form 

(5.1.1)    𝐹(𝑥, 𝑦, 𝑥̇, 𝑦̇) =

√𝑎(𝑥, 𝑦)𝑥̇2 + 𝑏(𝑥, 𝑦)𝑦̇2 + 2𝑐(𝑥, 𝑦)𝑥̇ 𝑦 ̇   . 

Where the symbols denote the following: 

𝑥, 𝑦 : local coordinates on the two-dimensional manifold, 

𝑥̇ =
𝑑𝑥

𝑑𝑡
  , 𝑦̇ =

𝑑𝑦

𝑑𝑡
  : components of the tangent (velocity) 

vector, 

𝑎(𝑥, 𝑦) , 𝑏(𝑥, 𝑦), 𝑐(𝑥, 𝑦) : smooth functions of (𝑥, 𝑦) 

defining the metric structure. 

Thus, 𝐹 represents the Finsler function associated with 

the metric. 

Where the coefficients are chosen as functions of the 

local image gradient: 

(5.1.2)    𝑎(𝑥, 𝑦) = 1 + 𝛼 (
𝜕𝐼

𝜕𝑥
)

2

  ,   𝑏(𝑥, 𝑦) = 1 +

𝛼 (
𝜕𝐼

𝜕𝑦
)

2

  ,  𝑐(𝑥, 𝑦) = 𝛼 
𝜕𝐼

𝜕𝑥
 

𝜕𝐼

𝜕𝑦
   . 

Here, 𝛼 > 0 is a tunable parameter controlling the 

anisotropy of the metric. 

5.2. Role of 𝑯𝒉-Recurrence 

From Theorem 3.1, the condition 

(5.2.1)    ∇𝑙𝐻𝑗𝑘ℎ
𝑖 = 𝜆𝑙 𝐻𝑗𝑘ℎ

𝑖 + 𝜇𝑙  𝐻𝑗𝑘ℎ
𝑖   , 

imposes a recurrence relation on the curvature tensor. In 

the image processing framework, this recurrence can be 

interpreted as the stability of directional curvatures under 

successive filtering iterations. This stability is 

particularly useful for preserving edges and contours 

during anisotropic diffusion processes. 

5.3. Simulation Steps 

The following computational procedure illustrates the 

application of the above concepts: 

Image Preprocessing: Convert the input image into 

grayscale intensity 𝐼(𝑥, 𝑦) . 

Metric Construction: Compute  
𝜕𝐼

𝜕𝑥
  and  

𝜕𝐼

𝜕𝑦
  using finite 

differences. Construct the coefficients (𝑎, 𝑏, 𝑐)  and 

define the Finsler metric 𝐹(𝑥, 𝑦, 𝑥̇, 𝑦̇). 

Connection and Curvature Computation: Using the 

metric F, calculate Cartan’s connection coefficients and 

the h-curvature tensor  𝐻𝑗𝑘ℎ
𝑖  . Verify the recurrence 

condition derived in Theorem 3.1 for different regions of 

the image. 

Filtering/Segmentation: Apply anisotropic diffusion 

guided by the Finsler metric. At each iteration, update 
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pixel intensities along geodesics defined by the metric 

and evaluate the effect of the recurrence condition on 

edge preservation. 

Analysis of Results: Compare the processed image with 

the standard Euclidean anisotropic diffusion. Images 

filtered with the Finslerian model are expected to show 

improved edge sharpness and better handling of 

anisotropic textures, consistent with the recurrence 

property. 

5.4. Discussion 

This application illustrates that the recurrence conditions 

established for generalized 𝐻ℎ-recurrent Finsler spaces 

are not only mathematically significant but also provide a 

geometric framework for practical algorithms in 

computer vision. Future extensions may include 

applications to 3D medical imaging, facial recognition, 

and texture classification, where directional stability is 

crucial. 

6. Conclusions 

In this work, we established the necessary and sufficient 

conditions for the existence of generalized 𝐻ℎ-recurrent 

Finsler spaces, denoted as G-𝐻ℎ-R-𝐹𝑛 . By systematically 

analyzing the Berwald curvature tensor and its associated 

tensors under h-covariant differentiation, we derived a 

sequence of equivalent recurrence relations and presented 

several theorems that characterize their structural 

behavior. These results demonstrate that the recurrence 

of curvature and torsion tensors depends fundamentally 

on the interplay between the covariant vector fields 𝜆𝑙 , 

𝜇𝑙 and 𝛿𝑙 , together with the underlying Finsler metric. 

The study further revealed that the Berwald curvature 

tensor, its associated torsion tensor, the Ricci tensor, the 

deviation tensor, and other higher-order contractions all 

preserve h-recurrence when specific tensorial conditions 

are satisfied. Moreover, we investigated special 

subclasses of generalized 𝐻ℎ-recurrent Finsler spaces, 

including affinely connected (Berwald) spaces and P2-

like structures, showing how additional constraints lead 

to simplified recurrence relations and deeper geometric 

insights. 

Overall, the findings not only generalize classical 

recurrence conditions in Finsler geometry but also 

highlight new interconnections between higher-order 

curvature tensors. These results enrich the structural 

theory of Finsler spaces and provide a solid foundation 

for potential applications in geometric analysis, 

anisotropic models, and related fields of differential 

geometry. 
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 مقالة بحثية 

مة ذات التكرار   مع تطبيقاتها في معالجة الصور متباينة الخواص 𝐇𝐡الهندسة الفنسلرية المُعمََّ

 2، و  وليد حسين العرشي،*1عادل محمد علي القشبري

 اليمن  عدن، عدن، جامعة عدن، -قسم الرياضيات، كلية التربية  1
 قسم الهندسة والحاسبات، كلية الهندسة والحاسبات، جامعة العلوم والتكنولوجيا، عدن، اليمن  2

 adel.math.edu@univ-aden.net & a.alqashbari@ust.edu* الباحث الممثلّ: عادل محمد علي القشبري؛ البريد الالكتروني: 

 2025سبتمبر   30نشر في   / 2025سبتمبر  15قبل في:  / 2025سبتمبر  08 استلم في:

 المُلخّص 

مة ذات التكرار ، ونثُبت عدداً من علاقات التكرار 𝐺-𝐻ℎ-R-𝐹𝑛ويرُمز لها بـ   𝐻ℎ في هذه الدراسة، نقوم بتحليل بنية الفضاءات الفنسلرية المُعمََّ

النظريات   تقدم  به.  المرتبطة  الهندسية  والمتغيرات  لكارتان  الأفقي  الانحناء  بموتر  استقرار  3a.4و،  3.2  ،3.1الخاصة  تصف  جديدة  شروطاً 

الإطار النظري ليشمل مجال معالجة الصور وتكرار الانحناء تحت الاشتقاق التوافقي الأفقي. ولإبراز الأهمية التطبيقية لهذه النتائج، قمنا بتوسيع  

تحسين  فاعلية في  التكرار  أظهرت شروط  وقد  الخواص،  متباينة  السمات  لتمثيل  الصورة  تدرجات  فنسلري مشتق من  مقياس  بناء  تم  الرقمية. 

كيف تسُهم خصائص تكرار   الحفاظ على الحواف أثناء عملية الترشيح بالتوزيع متباين الخواص. كما تم عرض خطوات المحاكاة التي توضح

الم الدور  المقترحة  المنهجية  تبُرز  التقليدية.  الإقليدية  بالطرق  مقارنة  الاتجاهي  والاستقرار  الضوضاء  كبح  تحسين  في  الانحناء  زدوج موترات 

قدمة مثل إزالة الضوضاء، والتقسيم، للتكرار الفنسلري العام: كامتداد أساسي في الهندسة التفاضلية، وكأداة فعالة لتطبيقات الرؤية الحاسوبية المت 

 .وتحليل الملمس

   .الخواص الاتجاهي، معالجة الصور الرقمية، التصفية متباينة ، موتر انحناء كارتان، التباين𝐻ℎ الهندسة الفنسلرية، التكرار الكلمات المفتاحية:
 

How to cite this article: 

A. M. A. Al-Qashbari, & W. H. Al-Arashi, “GENERALIZED 𝐻ℎ-RECURRENT FINSLER GEOMETRY WITH 

APPLICATIONS TO ANISOTROPIC IMAGE PROCESSING”, Electron. J. Univ. Aden Basic Appl. Sci., vol. 6, no. 3, 

pp. 190-200, Sep. 2025. DOI: https://doi.org/10.47372/ejua-ba.2025.3.458 

 

Copyright © 2025 by the Author(s). Licensee EJUA, Aden, Yemen. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC 

4.0) license. 

https://doi.org/10.47372/ejua-ba.2025.3.458

