

RESEARCH ARTICLE

HEMATOLOGICAL AND BONE METABOLISM ABNORMALITIES IN CHILDREN AND ADOLESCENTS WITH B-THALASSEMIA MAJOR

Afrah Saleh Saad Saleh Rajeh^{1,*}, and Gamal Abdul Hamid^{1,2,3,4}¹ Dept. Of Medical Laboratories, Faculty of Medicine and Health Sciences, University of Aden, Yemen² Director, National of hematology-oncology, Yemen; E-mail: drgamal2000@yahoo.com³ G. Director, National Program of Cancer Control, Yemen⁴ Chairman of WAMS, World Academy of Med Science, Yemen

*Corresponding author: Afrah Saleh Saad Saleh Rajeh; E-mail: afrahragh52@gmail.com

Received: 08 November 2025 / Accepted: 24 November 2025 / Published online: 31 December 2025

Abstract

β -thalassemia major (TM) is a transfusion-dependent hemoglobinopathy characterized by ineffective erythropoiesis and progressive iron accumulation. Despite improvements in transfusion and chelation regimens, metabolic bone disease remains a common and debilitating complication in young patients. To evaluate hematological indices and biochemical markers of bone metabolism in children and adolescents (≤ 21 years) with β -thalassemia major attending the Pediatric Department at the National Oncology Center, Aden, during January–December 2022. A cross-sectional analytical study of 40 transfusion-dependent TM patients was performed. Patients underwent complete blood counts and biochemical testing including serum ferritin, 25-OH vitamin D, parathyroid hormone (PTH), calcium and phosphorus. Descriptive statistics and categorical distributions versus reference ranges were analyzed. The cohort demonstrated severe chronic anemia (mean Hb 6.72 ± 1.77 g/dL; mean Hct $21.7 \pm 6.1\%$) with microcytosis (mean MCV 73.5 ± 6.54 fL) and marked anisocytosis (RDW-CV $21.61 \pm 7.00\%$). Median leukocyte count was $10.8 \times 10^3/\mu\text{L}$ with 60% of patients exhibiting leukocytosis; mean platelet count was increased ($463.47 \pm 281.4 \times 10^3/\mu\text{L}$). Iron overload was profound (mean serum ferritin 3718.9 ± 2453.8 ng/mL), with 92.5% of patients above the normal ferritin range and 77.5% classified as high or severe (≥ 2000 ng/mL). Vitamin D insufficiency/deficiency was highly prevalent (mean 25-OH vitamin D 23.85 ± 9.96 ng/mL; 47.5% deficient, 27.5% insufficient, 25% adequate). Biochemical evidence of disturbed mineral homeostasis included hypocalcemia in 55% of patients, low PTH in 40%, and hyperphosphatemia in 45%. Together, these findings indicate a strong association between iron overload, endocrine dysfunction, and impaired bone mineral metabolism. Children and adolescents with β -thalassemia major in this cohort exhibit severe anemia, overwhelming iron accumulation, high prevalence of vitamin D deficiency, and frequent disturbances in calcium-phosphate-PTH axis—factors that collectively predispose to metabolic bone disease. Early, integrated strategies—including vigilant iron management, routine endocrine assessment, vitamin D optimization, and targeted bone health monitoring—are essential to mitigate long-term skeletal morbidity in this population.

Keywords: β -thalassemia major; Iron overload; Bone metabolism; Vitamin D deficiency; Hypocalcemia; Parathyroid hormone; Pediatric.

1 Introduction

Hemoglobinopathies are among the most common inherited disorders worldwide, resulting from genetic mutations that alter either the structure or synthesis of hemoglobin. Hemoglobin (Hb) is a tetrameric protein composed of two α - and two β -chains, each containing a

heme group that binds oxygen reversibly. [1,2] Throughout human development, hemoglobin variants undergo a well-defined transition from embryonic forms to fetal hemoglobin (HbF, $\alpha 2\gamma 2$) and finally to adult hemoglobins, HbA ($\alpha 2\beta 2$) and HbA2 ($\alpha 2\delta 2$). [3–5] Mutations affecting globin gene expression lead to two major categories of disorders: thalassemia syndromes,

characterized by quantitative defects in globin chain production, and structural hemoglobin variants involving qualitative alterations.^[6,7] The first clinical description of thalassemia was made by Thomas Benton Cooley in 1925 in children of Mediterranean origin, establishing the foundation for subsequent research on what became known as β -thalassemia major.^[8] Later studies expanded the geographical distribution of the disease to South Asia and the Middle East, and by the mid-twentieth century, the molecular basis of thalassemia had been identified.^[9-13] The introduction of regular blood transfusions in the 1960s significantly improved the prognosis and life expectancy of affected individuals.^[14]

Pathophysiologically, thalassemia is characterized by impaired hemoglobin synthesis, ineffective erythropoiesis, hemolysis, and chronic anemia.^[15-17] Iron overload resulting from repeated transfusions remains a major clinical challenge, contributing to oxidative stress and multiorgan dysfunction.^[18-21] Accurate diagnosis requires an integrated approach combining clinical evaluation, hematologic indices, hemoglobin electrophoresis, and molecular analysis, often supported by biomarkers such as erythropoietin (EPO) and growth differentiation factor 15 (GDF-15), which are significantly elevated in affected patients.^[22-26] Clinically, thalassemia manifests with pallor, jaundice, hepatosplenomegaly, skeletal deformities, and thromboembolic complications, particularly in individuals who have undergone splenectomy.^[12, 27-29] The global distribution of thalassemia varies considerably, with the β -thalassemia trait prevalence estimated at 4.4% in Yemen, 64% for thalassemia major in Lebanon, and a 4.48% carrier incidence in Tunisia.^[30-33] Such variations are influenced by genetic background and cultural practices, particularly consanguineous marriages.

Among the major complications associated with β -thalassemia major (TM), skeletal abnormalities and bone fractures are of particular significance. Bone deformities and osteoporosis represent key features that arise from marrow expansion, hormonal imbalance, iron toxicity, and suboptimal chelation therapy.^[33-40] Bone loss in TM is multifactorial, involving genetic, metabolic, hormonal, and treatment-related factors. Genetic influences account for approximately 70% of bone mineral density (BMD) variance.^[41] Variations in the vitamin D receptor (VDR) gene located on chromosome 12q12 alter receptor activity and may predispose TM patients to bone loss.^[42-44] Similarly, mutations in the calcitonin receptor gene have been implicated in TM-associated osteoporosis. At the molecular level, the RANKL/RANK/osteoprotegerin (OPG) signaling pathway plays a pivotal role in bone remodeling by regulating osteoclast differentiation and activity.^[45] In TM, increased levels of sclerostin and Dickkopf-1, both

inhibitors of the Wnt signaling pathway, have been associated with enhanced bone turnover and reduced BMD, particularly in the lumbar spine and distal radius.^[46,47]

Iron overload also contributes to bone deterioration by promoting oxidative stress, cortical bone thinning, and impairment of osteoblast function.^[46,48] Elevated ferritin levels are correlated with both bone loss and endocrine disturbances. Endocrinopathies such as hypogonadism^[49], growth hormone (GH) dysregulation, diabetes, hyperthyroidism, and parathyroid disorders exacerbate bone resorption and further reduce BMD. Although GH therapy initially enhances bone resorption, it subsequently promotes bone formation, with improvements observed within 12 to 18 months of treatment.^[50] Hormonal replacement and bisphosphonate therapies have demonstrated benefits in preserving bone mass among thalassemia patients. Conversely, excessive doses of the iron chelator deferoxamine (DFO) have been associated with skeletal abnormalities, including rickets-like lesions, genu valgum, vertebral demineralization, and flattening of vertebral bodies.^[51,52,53] Continuous monitoring of growth and skeletal development is therefore essential to identify and prevent irreversible DFO-related complications.

In light of these observations, the present study aims to evaluate bone markers in children and adolescents (≤ 21 years) with β -thalassemia major attending or admitted to the Pediatric Department at the National Oncology Center in Aden during January–December 2022. This investigation seeks to explore the relationship between hematologic parameters, iron overload, endocrine status, and bone metabolism, thereby contributing to a better understanding of the mechanisms underlying bone fragility and osteoporosis in thalassemia and supporting improved clinical management and preventive strategies.

2 Research Problem

β -thalassemia major is one of the most prevalent hereditary hemoglobin disorders in developing countries and requires lifelong regular blood transfusions. Despite advances in transfusion and iron chelation therapy, **chronic iron overload** remains a major complication, leading to various **endocrine and metabolic disturbances**, including **metabolic bone disease** caused by impaired calcium–phosphate–vitamin D–parathyroid hormone regulation.

In **Yemen**, there is a lack of local data regarding the **hematological and biochemical alterations** associated with bone metabolism disorders among children and adolescents with β -thalassemia major. Therefore, it is essential to evaluate these **hematological indices and biochemical markers of bone metabolism** to determine the prevalence and extent of metabolic abnormalities, and to support the development of early monitoring and

management strategies aimed at reducing long-term skeletal complications in this population.

3 Methodology

A cross-sectional analytical study was conducted at the Pediatric Department of the National Oncology Center, Aden, from January to December 2022. The study included 40 children and adolescents (≤ 21 years) with transfusion-dependent β -thalassemia major who attended regular follow-ups at the center.

Clinical and demographic data were collected from patient records. Laboratory investigations included **complete blood count (CBC)** and biochemical measurements of **serum ferritin, 25-hydroxy vitamin D, parathyroid hormone (PTH), calcium, and phosphorus**. All analyses were performed in the center's laboratory following standard quality control procedures.

Data were analyzed using **SPSS version 25**. Descriptive statistics were presented as **mean \pm standard deviation (SD)** for normally distributed quantitative variables, **median** and **range** for non-normally distributed variables, and **frequencies (%)** for categorical variables. Hematological parameters, serum ferritin, vitamin D, parathyroid hormone, calcium, and phosphorus levels were summarized accordingly. Patients were further classified based on ferritin status, vitamin D levels, and biochemical parameters relative to reference ranges.

Ethical approval was obtained from the **Ethics Committee of the National Oncology Center**, and **written informed consent** was obtained from parents or guardians of all participants.

4 Laboratory Aspects of Beta-Thalassemia Major

4.1 Complete Blood Count (CBC)

Patients with beta-thalassemia major typically exhibit microcytic hypochromic anemia, with hemoglobin (Hb) levels below 7 g/dL, mean corpuscular volume (MCV) ranging from 50–70 fL, and mean corpuscular hemoglobin (MCH) between 12–20 pg. Beta-thalassemia intermedia presents with Hb values of 7–10 g/dL, MCV of 50–80 fL, and MCH of 16–24 pg. In beta-thalassemia minor, the red cell count is often elevated, with reduced MCV and MCH, while the red cell distribution width (RDW) typically shows mild elevation. This pattern helps differentiate thalassemias from other microcytic hypochromic anemias, such as iron deficiency and sideroblastic anemia, which present with markedly elevated RDW.

Peripheral blood smear in severe beta-thalassemia shows microcytic hypochromic anemia with target cells, teardrop cells, coarse basophilic stippling, anisopoikilocytosis, bizarre red cell morphology, and numerous nucleated red blood cells.^[54] Bone marrow

examination is generally unnecessary for diagnosis, as the marrow is highly cellular due to erythroid hyperplasia, with a reversed myeloid/erythroid ratio of 3 or 4 to 0.1 or less.

4.2 Serum Ferritin (SF)

Serum ferritin correlates with body iron stores and is useful for repeated monitoring due to its relative ease and low cost. Trends in SF are more informative than absolute values: decreasing SF indicates a reduction in iron burden, while increasing SF suggests iron accumulation but may also reflect inflammation or tissue damage. Long-term monitoring of SF is critical in assessing the risk of complications from iron overload in thalassemia major.^[55–58]

Studies indicate that maintaining SF below 2,500 μ g/L with chelation therapy (e.g., deferoxamine, DFO) over a decade reduces the risk of cardiac disease and mortality. Further benefits may be observed when SF levels are kept below 1,000 μ g/L.^[55,57] Variations in SF response to chelation can occur due to inflammation, nonlinear relationships between body iron and SF, or high starting iron loads. SF values below 3,000 μ g/L primarily reflect macrophage iron stores, while values above 3,000 μ g/L increasingly indicate hepatocyte ferritin leakage.^[56,59]

4.3 Parathyroid Hormone (PTH) and Phosphate (P)

Moderate to severe thalassemia patients require regular transfusions. Overt hypoparathyroidism is uncommon^[60] but asymptomatic forms have been reported, with incidences up to 42% in some studies^[61]. Hypoparathyroidism is primarily associated with iron overload.^[62–65]

Fibroblast growth factor-23 (FGF-23), a phosphaturic hormone secreted by osteoblasts and osteocytes, responds to hyperphosphatemia and elevated 1,25-dihydroxyvitamin D (1,25-(OH)2D) levels.^[66] FGF-23 reduces phosphate reabsorption in the kidneys and inhibits 1 α -hydroxylase, decreasing active vitamin D production. It also suppresses PTH secretion, modulating phosphaturia.^[67,68]

Hypoparathyroidism typically manifests during the second decade in transfusion-dependent thalassemia major, with incidence ranging from 1.2% to 19%, affecting males slightly more frequently than females (M/F ratio = 1.35). Neurological and cardiac complications, including tetany, seizures, and cardiac failure, may occur in severe cases.^[69]

4.4 Calcium and Phosphate

Calcium and phosphate are essential for bone integrity, muscle function, nerve conduction, intracellular signaling, and glandular activity. PTH is the principal regulator of calcium homeostasis.^[70] Phosphate balance depends on coordinated interactions between the

intestine, bone, parathyroid gland, and kidneys.[71,72] Thalassemia patients often exhibit lower serum calcium and higher phosphate levels compared to controls.[73,74] with calcium levels correlating inversely with serum ferritin.[75]

4.5 Calcium and Vitamin D

Vitamin D deficiency is prevalent among thalassemia patients (85–100%).[76,77] even in sunny regions.[78] Contributing factors include low calcium intake[79] and hypercalciuria[80] Deficiency impairs bone mineralization, muscle function, and cardiac performance, particularly due to left ventricular dysfunction associated with iron overload.[81,82] Supplementation with calcium and vitamin D (2,000 IU/day) is recommended for all patients, with serum vitamin levels monitored every six months.[78,83,84]

5 Laboratory Procedure

Blood samples (5 mL) were collected via venipuncture after applying a tourniquet and disinfecting with 70% alcohol. Three milliliters were placed in blood sample tubes and centrifuged within 30 minutes. Samples were transported in a cooler box at 2–8 °C for 8–72 hours to the laboratory.

Forty patients (both sexes, ≤ 21 years) receiving multiple transfusions were included. EDTA tubes were used for hematology analysis via automated cell counter (Sysmex XP-300), measuring Hb, Hct, MCH, MCHC, MCV, RBC, WBC, and platelets. Serum samples were analyzed for biochemistry using Cobas c311. Vitamin D and PTH were assessed via electrochemiluminescence immunoassay (ECLIA) using Cobas e411, while phosphate was analyzed using the Roche Cobas Integra 400 Plus at the National Center for Central Public Health Laboratory, Aden.

6 Result

6.1 Hematological Findings

Table 1: Descriptive statistics of hematological findings

VARIABLE	MEAN	SD	MEDIAN	MIN	MAX	REFERENCE RANGE
WBC ($\times 10^3/\mu\text{L}$)*	10.8	40.34	10.85	4.1	148	3.0–10
RBC (MCL)	2.88	0.693	2.76	1.58	4.80	M: 4.5–6.5 F: 3.9–5.6
HB (G/DL)	6.72	1.77	6.50	3.2	10.8	12–16
HCT (%)	21.72	6.09	20.65	11	39.9	36–48
MCV (fL)	73.5	6.54	72.85	58.5	87.6	80–95
MCH (PG)	23.92	2.86	23.60	18.6	30.5	27–34
MCHC (G/DL)	32.44	2.29	32.5	27.6	36.4	20–35
PLATELETS ($\times 10^3/\mu\text{L}$)	463.47	281.4	379	120	1295	150–400
RDW-CV (%)	21.61	7.00	19.2	13	37.2	11.5–14.5

*Median [Interquartile range].

Patients demonstrated significantly low Hb (6.72 ± 1.77 g/dL) and Hct ($21.7 \pm 6.1\%$). MCV averaged 73.5 ± 6.54 fL (range 58.5–87.6 fL). Median leukocyte count was $10.8 \times 10^3/\mu\text{L}$; 24 patients (60%) had WBC $> 10,000 \times 10^3/\mu\text{L}$. Mean platelet count was $463.47 \pm 281.4 \times 10^3/\mu\text{L}$.

6.2 Serum Ferritin and Bone Markers

Table 2: Characteristics of Thalassemia Major Patients Including Serum Ferritin and Bone Markers

VARIABLE	MEAN N	SD	MEDIA N	MIN	MA X	REFERENC E RANGE
SERUM FERRITIN (NG/ML)	3718.9	2453.8	3020.5	220.2	9975	20–400
25-OH VITAMIN D (NG/ML)	23.85	9.96	23.03	7.75	53.82	>30
PTH (PG/ML)	23.15	13.74	22.3	1.2	59.77	15–65
SERUM CALCIUM (MG/DL)	8.455	1.01	8.45	5.0	10.3	8.6–10.3
SERUM PHOSPHOROUS (MG/DL)	4.53	1.53	4.4	2.1	10.9	2.5–4.5

Ferritin levels were markedly elevated ($\sim 9 \times$ normal), while vitamin D, PTH, and calcium were below normal ranges. Phosphate levels exceeded normal values.

Table 3: Clinical Classification of Ferritin Status Among Patients

CATEGORY	NO. OF PATIENTS	PERCENTAGE (%)
<2000 NG/ML (MODERATE)	9	22.5
2000–4000 NG/ML (HIGH)	15	37.5
>4000 NG/ML (SEVERE)	16	40.0

Most patients exhibited either high (37.5%) or severe (40%) serum ferritin levels, with only 22.5% having moderate levels.

Table 4: Distribution of Patients by Vitamin D Levels

MEDIAN VITAMIN D LEVELS	CATEGORY	NO. OF PATIENTS (N=40)	PERCENTAGE (%)
≥ 30 NG/ML	ADEQUATE VITAMIN D	10	25%
20–30 NG/ML	INSUFFICIENT	11	27.5%
<20 NG/ML	VITAMIN D DEFICIENCY	19	47.5%

Table 4 demonstrates that nearly half of the patients (47.5%) exhibited vitamin D deficiency, while 27.5% had insufficient levels. Only 25% of patients achieved adequate vitamin D levels despite regular supplementation.

Table 5: Distribution of Biochemical Results According to Normal Reference Ranges

BIOCHEMICAL PARAMETER (REFERENCE RANGE)	CATEGORY	NO. OF PATIENTS	%
SERUM FERRITIN (20–400 µg/L)	NORMAL	3	7.5%
	ABNORMAL (HIGH)	37	92.5%
SERUM CALCIUM (8.6–10.3 mg/dL)	NORMAL	18	45%
	ABNORMAL (LOW)	22	55%
PARATHYROID HORMONE (15–65 pg/mL)	NORMAL	24	60%
	ABNORMAL (LOW)	16	40%
SERUM PHOSPHORUS (2.5–4.5 mg/dL)	NORMAL	22	55%
	ABNORMAL (HIGH)	18	45%
VITAMIN D	NORMAL	10	25%
	INSUFFICIENT	11	27.5%
	DEFICIENT	19	47.5%

Biochemical profiling revealed marked abnormalities: elevated serum ferritin in 92.5% of cases indicating severe iron overload; hypocalcemia in 55%; low PTH in 40%; hyperphosphatemia in 45%; and high prevalence of vitamin D deficiency (47.5%) with only 25% within normal range.

7 Discussion

7.1 Hematological Findings

Patients demonstrated significantly low pre-transfusion hemoglobin (Hb 6.7 ± 1.77 g/dL) and hematocrit (Hct $21.7 \pm 6.0\%$), consistent with reports from India (Hb 6.8 ± 1.08 g/dL)[85], Bangladesh (Hb 7.2 ± 1.5 g/dL)[86], and Pakistan (Hb 7.4 ± 1.9 g/dL).[87] Higher pre-transfusion Hb levels were reported in Egypt (8.2 ± 0.27 g/dL)[88], Palestine (8.0 ± 1.0 g/dL).[89] and Turkey (9.2 ± 0.7 g/dL)[90]. Low Hb is primarily attributed to ineffective erythropoiesis due to β -globin chain imbalance, hemolysis, and red blood cell destruction, with additional contribution from splenomegaly.[12,91]

The mean RBC count was $2.88 \pm 0.69 \times 10^3/\mu\text{L}$, comparable to India ($2.76 \pm 0.53 \times 10^3/\mu\text{L}$)[85] and Bangladesh ($2.80 \pm 0.63 \times 10^3/\mu\text{L}$)[92]. Microcytosis and hypochromia were prevalent, with mean MCV 73.5 ± 6.54 fL, similar to reports from Saudi Arabia (70.4 ± 2.68 fL)[93], Bangladesh (70 ± 9.5 fL)[92], and India (78.29 ± 6.79 fL).[85]

White blood cell (WBC) count median was $10.85 \times 10^3/\mu\text{L}$ [range 7.0–32.85], with 60% exceeding the upper normal limit, reflecting immunological hyperactivity and possible nucleated RBC miscounting.[94–97] Platelet count averaged $463.47 \pm 281.4 \times 10^3/\mu\text{L}$, with 42.5% exceeding the normal upper range, consistent with

reports from Gaza[89], Egypt[98], and Aden, Yemen[95]. Thrombocytosis may result from elevated erythropoietin-induced megakaryopoiesis and contributes to a hypercoagulable state.[99–101]

RDW-CV was markedly elevated, indicative of anisopoikilocytosis, independent of transfusion status, aligning with studies in Turkey and other populations.[102–104]

7.2 Biochemical and Endocrine Findings

Serum ferritin levels were elevated in 77.5% of patients (mean 3718.98 ± 2453.82 ng/mL), consistent with severe iron overload.[85,105–107] Transfusion with chelation therapy prolongs survival but predisposes to systemic complications, including skeletal deformities and endocrine dysfunctions.[108–110]

Hypoparathyroidism was observed in 40% of children, mirroring findings from Pakistan (40%).[75,111] Low PTH, serum calcium (mean 8.4 ± 1.0 mg/dL), and high phosphorus (mean 4.5 ± 1.5 mg/dL) levels indicate disruption of calcium-phosphorus homeostasis, influenced by iron overload, chelation therapy, and hepatic dysfunction.[75,109,110,119–128,112–118] Vitamin D deficiency was prevalent (47.5%), with insufficient levels in 27.5%, consistent with studies worldwide reporting rates from 44.3% to 98% in thalassemia patients.[87, 129–133] Contributing factors include malabsorption, inadequate intake, hepatic dysfunction, iron deposition in skin, and hypoparathyroidism. [42,60,128,134–138]

In the PTH-calcium axis, normal compensatory PTH elevation in response to vitamin D deficiency was blunted in our cohort, likely due to iron-induced parathyroid damage. This is supported by 40% of patients exhibiting hypoparathyroidism, a finding consistent with previous studies[111,123,139–142]. Serial PTH measurements are recommended to monitor early parathyroid impairment.

8 Conclusion

Children and adolescents with β -thalassemia major exhibit a complex interplay of hematologic, metabolic, and endocrine abnormalities that predispose them to long-term skeletal complications. Beyond the characteristic anemia and iron overload, compensatory hematopoiesis, elevated platelet counts, and dysregulated mineral metabolism contribute to impaired bone health. The high prevalence of vitamin D deficiency, hypocalcemia, and low parathyroid hormone levels underscores the critical role of endocrine and nutritional factors in the development of metabolic bone disease. Iron-induced oxidative stress further exacerbates skeletal fragility by affecting osteoblast function and promoting bone resorption. These findings highlight the multifactorial etiology of osteoporosis in thalassemia

major and emphasize the necessity for early, integrated management strategies. Comprehensive care should include optimized transfusion protocols, vigilant iron chelation, routine endocrine assessment, correction of vitamin D and calcium deficiencies, and regular bone health monitoring. Implementing such multidisciplinary approaches can mitigate long-term morbidity, preserve skeletal integrity, and enhance the quality of life for patients living with this chronic and debilitating condition.

Reference:

- [1] F. Hassan Gameel and Z. Alhajouj, "Hemoglobin Variant in Al-Madina Al-Mnora City, Saudi Arabia," *Pak. J. Med. Res.*, Jan. 2011.
- [2] H. A. Hamamy and N. A. S. Al-Allawi, "Epidemiological profile of common haemoglobinopathies in Arab countries," *J. Community Genet.*, vol. 4, no. 2, pp. 147–167, Apr. 2013, doi: 10.1007/s12687-012-0127-8.
- [3] E. Kohne, "Hemoglobinopathies: clinical manifestations, diagnosis, and treatment," *Dtsch. Arztebl. Int.*, vol. 108, no. 31–32, pp. 532–540, Aug. 2011, doi: 10.3238/arztebl.2011.0532.
- [4] D. P. Kaufman, J. Khattar, and S. L. Lappin, "Physiology, Fetal Hemoglobin," Treasure Island (FL), 2025.
- [5] M. S. Figueiredo, "The importance of hemoglobin A2 determination," *Rev. Bras. Hematol. Hemoter.*, vol. 37, no. 5, pp. 287–289, 2015, doi: 10.1016/j.bjhh.2015.06.002.
- [6] P. Hariharan, S. Colaco, R. Colah, K. Ghosh, and A. Nadkarni, "Delta globin gene variations leading to reduction in HbA(2) levels," *Int. J. Lab. Hematol.*, vol. 38, no. 6, pp. 610–615, Dec. 2016, doi: 10.1111/ijlh.12548.
- [7] B. Giardine *et al.*, "Updates of the HbVar database of human hemoglobin variants and thalassemia mutations," *Nucleic Acids Res.*, vol. 42, no. Database issue, pp. D1063–9, Jan. 2014, doi: 10.1093/nar/gkt911.
- [8] P. Cooley, T. B., & Lee, "Erythroblastic anemia in children," *Am J Dis Child.*, vol. 30, pp. 130–136, 1925.
- [9] I. C. Verma, R. Saxena, and S. Kohli, "Past, present & future scenario of thalassaemic care & control in India," *Indian J. Med. Res.*, vol. 134, no. 4, pp. 507–521, Oct. 2011.
- [10] M. Napier, L. E., & Das Gupta, "Thalassemia in Indian children," *J. Indian Med. Assoc.*, 1939.
- [11] Y. M. Patel, J. C., & Bhende, "Case report of thalassemia in a Brahmin boy," *Bombay Hosp. Journal.*, 1939.
- [12] D. J. Weatherall and J. B. Clegg, *The Thalassaemia Syndromes*. Wiley, 2001. doi: 10.1002/9780470696705.
- [13] D. R. Higgs, J. D. Engel, and G. Stamatoyannopoulos, "Thalassaemia," *Lancet (London, England)*, vol. 379, no. 9813, pp. 373–383, Jan. 2012, doi: 10.1016/S0140-6736(11)60283-3.
- [14] G. M. Brittenham, "Iron-chelating therapy for transfusional iron overload," *N. Engl. J. Med.*, vol. 364, no. 2, pp. 146–156, 2011, doi: 10.1056/nejmct1004810.
- [15] G. Stamatoyannopoulos, *The Molecular basis of blood diseases*, 2nd ed. Philadelphia SE - xix, 986 pages : illustrations ; 29 cm: W.B. Saunders, 1994. doi: LK - <https://worldcat.org/title/26895324>.
- [16] D. Rund and E. Rachmilewitz, "Beta-thalassemia," *N. Engl. J. Med.*, vol. 353, no. 11, pp. 1135–1146, Sep. 2005, doi: 10.1056/NEJMra050436.
- [17] R. Hoffman, E. J. Benz, L. E. Silberstein, H. Heslop, J. Anastasi, and J. Weitz, *Hematology: Basic Principles and Practice*. Saunders/Elsevier, 2013. [Online]. Available: <https://books.google.com/books?id=a1estSuaQ6kC>
- [18] D. R. Miller, R. L. Baehner, and C. H. Smith, *Blood Diseases of Infancy and Childhood: In the Tradition of C.H. Smith*. Mosby, 1989. [Online]. Available: <https://books.google.com/books?id=ZAVtAAAAMAAJ>
- [19] E. Fibach and E. Rachmilewitz, "The role of oxidative stress in hemolytic anemia," *Curr. Mol. Med.*, vol. 8, no. 7, pp. 609–619, 2008.
- [20] R. W. Kalpravidh *et al.*, "Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids," *Clin. Biochem.*, vol. 43, no. 4–5, pp. 424–429, 2010.
- [21] M. Pines and S. Sheth, "Clinical Classification, Screening, and Diagnosis in Beta-Thalassemia and Hemoglobin E/Beta-Thalassemia," *Hematol. Oncol. Clin. North Am.*, vol. 37, no. 2, pp. 313–325, Apr. 2023, doi: 10.1016/j.hoc.2022.12.003.
- [22] A. Lal and E. Vichinsky, "The Clinical Phenotypes of Alpha Thalassemia," *Hematol. Oncol. Clin. North Am.*, vol. 37, no. 2, pp. 327–339, Apr. 2023, doi: 10.1016/j.hoc.2022.12.004.

[23] A. Zaylaa, M. Makki, and R. Kassem, *Thalassemia Diagnosis Through Medical Imaging: A New Artificial Intelligence-Based Framework*. 2022. doi: 10.1109/IC2SPM56638.2022.9988891.

[24] S. Zhu *et al.*, “Clinical experience using peripheral blood parameters to analyse the mutation type of thalassemia carriers in pregnant women,” *J. Obstet. Gynaecol. (Lahore)*, vol. 43, no. 1, p. 2195490, 2023.

[25] M. H. Yousif and H. S. Al-Mamoori, “Evaluation of the levels of the markers of ineffective erythropoiesis (transforming growth factor-beta, growth differentiation factor 15 and erythropoietin) in patient with β -thalassemia syndrome and its correlation to clinical and hematological parameter,” *Iraqi J. Hematol.*, vol. 11, no. 1, 2022, [Online]. Available: https://journals.lww.com/ijhm/fulltext/2022/11010/evaluation_of_the_levels_of_the_markers_of.3.aspx

[26] R. Origia and F. Comitini, “Pregnancy in thalassemia,” *Mediterr. J. Hematol. Infect. Dis.*, vol. 11, no. 1, p. e2019019, 2019.

[27] A. T. Taher, Z. K. Otrock, I. Uthman, and M. D. Cappellini, “Thalassemia and hypercoagulability,” *Blood Rev.*, vol. 22, no. 5, pp. 283–292, Sep. 2008, doi: 10.1016/j.blre.2008.04.001.

[28] V. De Sanctis *et al.*, “Final height and endocrine function in thalassaemia intermedia,” *J. Pediatr. Endocrinol. Metab.*, vol. 11 Suppl 3, pp. 965–971, 1998.

[29] H. Al-Nood and A. Al-Hadi, “Proposed low-cost premarital screening program for prevention of sickle cell and thalassemia in Yemen,” *Qatar Med. J.*, vol. 2013, no. 2, pp. 33–37, 2013, doi: 10.5339/qmj.2013.13.

[30] A. Inati, N. Zeineh, H. Isma’el, S. Koussa, W. Gharzuddine, and A. Taher, “Beta-thalassemia: the Lebanese experience,” *Clin. Lab. Haematol.*, vol. 28, no. 4, pp. 217–227, Aug. 2006, doi: 10.1111/j.1365-2257.2006.00792.x.

[31] H. Elloumi-Zghal and H. Chaabouni Bouhamed, “Genetics and genomic medicine in Tunisia,” *Mol. Genet. genomic Med.*, vol. 6, no. 2, pp. 134–159, Mar. 2018, doi: 10.1002/mgg3.392.

[32] M. Bejaoui and N. Guirat, “Beta thalassemia major in a developing country: epidemiological, clinical and evolutionary aspects,” *Mediterr. J. Hematol. Infect. Dis.*, vol. 5, no. 1, p. e2013002, 2013, doi: 10.4084/MJHID.2013.002.

[33] D. M. Dines, V. C. Canale, and W. D. Arnold, “Fractures in thalassemia,” *J. Bone Joint Surg. Am.*, vol. 58, no. 5, pp. 662–666, Jul. 1976.

[34] E. Exarchou, C. Politou, E. Vretou, D. Pasparakis, G. Madessis, and A. Caramerou, “Fractures and epiphyseal deformities in beta-thalassemia,” *Clin. Orthop. Relat. Res.*, no. 189, pp. 229–233, Oct. 1984.

[35] L. Ruggiero and V. De Sanctis, “Multicentre study on prevalence of fractures in transfusion-dependent thalassaemic patients,” *J. Pediatr. Endocrinol. Metab.*, vol. 11 Suppl 3, pp. 773–778, 1998.

[36] P. L. Basanagoudar, S. S. Gill, M. S. Dhillon, and R. K. Marwaha, “Fractures in transfusion dependent beta thalassemia—an Indian study,” *Singapore Med. J.*, vol. 42, no. 5, pp. 196–199, May 2001.

[37] A. Johansen, R. J. Evans, M. D. Stone, P. W. Richmond, S. V Lo, and K. W. Woodhouse, “Fracture incidence in England and Wales: a study based on the population of Cardiff,” *Injury*, vol. 28, no. 9–10, pp. 655–660, 1997, doi: 10.1016/s0020-1383(97)00144-7.

[38] I. E. Jones, S. M. Williams, N. Dow, and A. Goulding, “How many children remain fracture-free during growth? a longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study,” *Osteoporos. Int. a J. Establ. as result Coop. between Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA*, vol. 13, no. 12, pp. 990–995, Dec. 2002, doi: 10.1007/s001980200137.

[39] F. Wu *et al.*, “Fractures between the ages of 20 and 50 years increase women’s risk of subsequent fractures,” *Arch. Intern. Med.*, vol. 162, no. 1, pp. 33–36, Jan. 2002, doi: 10.1001/archinte.162.1.33.

[40] M. G. Vogiatzi *et al.*, “Prevalence of fractures among the Thalassemia syndromes in North America,” *Bone*, vol. 38, no. 4, pp. 571–575, Apr. 2006, doi: 10.1016/j.bone.2005.10.001.

[41] J. A. Eisman, “Genetics of osteoporosis,” *Endocr. Rev.*, vol. 20, no. 6, pp. 788–804, Dec. 1999, doi: 10.1210/edrv.20.6.0384.

[42] H. A. Abbassy, R. A. A. Elwafa, and O. M. Omar, “Bone Mineral Density and Vitamin D Receptor Genetic Variants in Egyptian Children with Beta Thalassemia Major on Vitamin D Supplementation,” *Mediterr. J. Hematol. Infect. Dis.*, vol. 11, no. 1, p. e2019013, 2019, doi: 10.4084/MJHID.2019.013.

[43] L. Zhang *et al.*, “Retracted article: associations between VDR gene polymorphisms and osteoporosis risk and bone mineral density in postmenopausal women: a systematic review and meta-analysis,” *Sci. Rep.*, vol. 8, no. 1, pp. 1–16, 2018.

[44] K. Singh, R. Kumar, A. Shukla, S. R. Phadke, and S. Agarwal, “Status of 25-hydroxyvitamin D deficiency and effect of vitamin D receptor gene polymorphisms on bone mineral density in thalassemia patients of North India,” *Hematology*, vol. 17, no. 5, pp. 291–296, Sep. 2012, doi: 10.1179/1607845412Y.0000000017.

[45] B. F. Boyce and L. Xing, “Biology of RANK, RANKL, and osteoprotegerin,” *Arthritis Res. Ther.*, vol. 9 Suppl 1, no. Suppl 1, p. S1, 2007, doi: 10.1186/ar2165.

[46] E. Voskaridou *et al.*, “Serum Dickkopf-1 is increased and correlates with reduced bone mineral density in patients with thalassemia-induced osteoporosis. Reduction post-zoledronic acid administration,” *Haematologica*, vol. 94, no. 5, pp. 725–728, May 2009, doi: 10.3324/haematol.2008.000893.

[47] S. S. Kohli and V. S. Kohli, “Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications,” *Indian J. Endocrinol. Metab.*, vol. 15, no. 3, pp. 175–181, Jul. 2011, doi: 10.4103/2230-8210.83401.

[48] J. Tsay *et al.*, “Bone loss caused by iron overload in a murine model: importance of oxidative stress,” *Blood*, vol. 116, no. 14, pp. 2582–2589, Oct. 2010, doi: 10.1182/blood-2009-12-260083.

[49] E. Carmina *et al.*, “Hypogonadism and hormone replacement therapy on bone mass of adult women with thalassemia major,” *Calcif. Tissue Int.*, vol. 74, no. 1, pp. 68–71, Jan. 2004, doi: 10.1007/s00223-002-1044-3.

[50] C. Ohlsson, B. A. Bengtsson, O. G. Isaksson, T. T. Andreassen, and M. C. Slootweg, “Growth hormone and bone,” *Endocr. Rev.*, vol. 19, no. 1, pp. 55–79, Feb. 1998, doi: 10.1210/edrv.19.1.0324.

[51] V. Gabutti and A. Piga, “Results of long-term iron-chelating therapy,” *Acta Haematol.*, vol. 95, no. 1, pp. 26–36, 1996.

[52] N. F. Olivieri *et al.*, “Growth failure and bony changes induced by deferoxamine,” *Am. J. Pediatr. Hematol. Oncol.*, vol. 14, no. 1, pp. 48–56, 1992, doi: 10.1097/00043426-199221000-00007.

[53] S. De Virgiliis *et al.*, “Deferoxamine-induced growth retardation in patients with thalassemia major,” *J. Pediatr.*, vol. 113, no. 4, pp. 661–669, Oct. 1988, doi: 10.1016/s0022-3476(88)80375-5.

[54] R. Origia, “β-Thalassemia,” vol. 19, no. 6, pp. 609–619, 2017, doi: 10.1038/gim.2016.173.

[55] C. Borgna-Pignatti *et al.*, “Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine,” *Haematologica*, vol. 89, no. 10, pp. 1187–1193, Oct. 2004.

[56] B. A. Davis, C. O’Sullivan, P. H. Jarritt, and J. B. Porter, “Value of sequential monitoring of left ventricular ejection fraction in the management of thalassemia major,” *Blood*, vol. 104, no. 1, pp. 263–269, 2004.

[57] N. F. Olivieri *et al.*, “Survival in medically treated patients with homozygous β-thalassemia,” *N. Engl. J. Med.*, vol. 331, no. 9, pp. 574–578, 1994.

[58] T. V Adamkiewicz *et al.*, “Serum ferritin level changes in children with sickle cell disease on chronic blood transfusion are nonlinear and are associated with iron load and liver injury,” *Blood, J. Am. Soc. Hematol.*, vol. 114, no. 21, pp. 4632–4638, 2009.

[59] M. Worwoon, S. J. Cragg, A. Jacobs, C. McLaren, C. Richeits, and J. Economidou, “Binding of Serum Ferritin to Concanavalin A: Patients with Homozygous β Thalassaemia and Transfusional Iron Overload,” *Br. J. Haematol.*, vol. 46, no. 3, pp. 409–416, 1980.

[60] M. G. Vogiatzi *et al.*, “Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America,” *Br. J. Haematol.*, vol. 146, no. 5, pp. 546–556, Sep. 2009, doi: 10.1111/j.1365-2141.2009.07793.x.

[61] L. Even, T. Bader, and Z. Hochberg, “Nocturnal calcium, phosphorus and parathyroid hormone in the diagnosis of concealed and subclinical hypoparathyroidism,” *Eur. J. Endocrinol.*, vol. 156, no. 1, pp. 113–116, Jan. 2007, doi: 10.1530/eje.1.02316.

[62] M. R. Gamberini, V. De Sanctis, and G. Gilli, “Hypogonadism, diabetes mellitus, hypothyroidism, hypoparathyroidism: incidence and prevalence related to iron overload and chelation therapy in patients with thalassaemia major followed from 1980 to 2007 in the Ferrara Centre,” *Pediatr. Endocrinol. Rev. PER*, vol. 6, pp. 158–169, 2008.

[63] G. A. A. M. Sleem, I. S. Al-Zakwani, and M. Almuslahi, "Hypoparathyroidism in adult patients with Beta-thalassemia major.," *Sultan Qaboos Univ. Med. J.*, vol. 7, no. 3, pp. 215–218, Dec. 2007.

[64] K. M. Zandian *et al.*, "The prevalence of hypoparathyroidism among patients with major thalassemia aged above 10 years," 2005.

[65] K. M. Belhoul, M. L. Bakir, M.-S. Saned, A. M. A. Kadhim, K. M. Musallam, and A. T. Taher, "Serum ferritin levels and endocrinopathy in medically treated patients with β thalassemia major.," *Ann. Hematol.*, vol. 91, no. 7, pp. 1107–1114, Jul. 2012, doi: 10.1007/s00277-012-1412-7.

[66] R. Kumar, "Phosphate sensing.," *Curr. Opin. Nephrol. Hypertens.*, vol. 18, no. 4, pp. 281–284, Jul. 2009, doi: 10.1097/MNH.0b013e32832b5094.

[67] H. Saito *et al.*, "Human fibroblast growth factor-23 mutants suppress Na⁺-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production.," *J. Biol. Chem.*, vol. 278, no. 4, pp. 2206–2211, Jan. 2003, doi: 10.1074/jbc.M207872200.

[68] I. Z. Ben-Dov *et al.*, "The parathyroid is a target organ for FGF23 in rats.," *J. Clin. Invest.*, vol. 117, no. 12, pp. 4003–4008, Dec. 2007, doi: 10.1172/JCI32409.

[69] V. De Sanctis *et al.*, "Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines.," *Indian J. Endocrinol. Metab.*, vol. 17, no. 1, pp. 8–18, Jan. 2013, doi: 10.4103/2230-8210.107808.

[70] U. S. Jeon, "Kidney and calcium homeostasis.," *Electrolyte Blood Press.*, vol. 6, no. 2, pp. 68–76, Dec. 2008, doi: 10.5049/EBP.2008.6.2.68.

[71] A. Rastegar, "New concepts in pathogenesis of renal hypophosphatemic syndromes.," *Iran. J. Kidney Dis.*, vol. 3, no. 1, pp. 1–6, Jan. 2009.

[72] M. S. Razzaque, "The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis.," *Nat. Rev. Endocrinol.*, vol. 5, no. 11, pp. 611–619, Nov. 2009, doi: 10.1038/nrendo.2009.196.

[73] A. A. Hagag, M. R. El-Shanshory, and A. M. Abo El-Enein, "Parathyroid function in children with beta thalassemia and correlation with iron load.," *Adv Pediatr Res*, vol. 2, no. 3, pp. 1–6, 2015.

[74] N. Mahdi, T. Garadah, Z. Hassan, A. Jaradat, and D. S. Nagalla, "The Prevalence of Adrenal, Parathyroid and Cardiac Dysfunction in Patients with Beta Thalassemia Major.," *Int. J. Clin. Med.*, vol. 04, pp. 325–330, Jan. 2013, doi: 10.4236/ijcm.2013.47058.

[75] A. Adil, Z. A. Sobani, A. Jabbar, S. N. Adil, and S. Awan, "Endocrine complications in patients of beta thalassemia major in a tertiary care hospital in Pakistan.," *J. Pak. Med. Assoc.*, vol. 62, no. 3, pp. 307–310, Mar. 2012.

[76] N. Z. Mirhosseini *et al.*, "Bone-related complications of transfusion-dependent beta thalassemia among children and adolescents.," *J. Bone Miner. Metab.*, vol. 31, no. 4, pp. 468–476, Jul. 2013, doi: 10.1007/s00774-013-0433-1.

[77] S. A. , Adel A, Bedair E, "An adolescent boy with thalassemia major presenting with bone pain, numbness, tetanic contractions and growth and pubertal delay: panhypopituitarism and combined vitamin D and parathyroid defects.," *Pediatr Endocrinol Rev*, no. 6, pp. 155–7, 2008.

[78] P. Nakavachara and V. Viprakasit, "Children with hemoglobin E/ β -thalassemia have a high risk of being vitamin D deficient even if they get abundant sun exposure: a study from Thailand.," *Pediatr. Blood Cancer*, vol. 60, no. 10, pp. 1683–1688, Oct. 2013, doi: 10.1002/pbc.24614.

[79] E. B. Fung *et al.*, "Inadequate dietary intake in patients with thalassemia.," *J. Acad. Nutr. Diet.*, vol. 112, no. 7, pp. 980–990, 2012.

[80] C. T. Quinn *et al.*, "Renal dysfunction in patients with thalassaemia.," *Br. J. Haematol.*, vol. 153, no. 1, pp. 111–117, Apr. 2011, doi: 10.1111/j.1365-2141.2010.08477.x.

[81] M. Wacker and M. F. Holick, "Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation.," *Nutrients*, vol. 5, no. 1, pp. 111–148, Jan. 2013, doi: 10.3390/nu5010111.

[82] J. C. Wood and N. Ghugre, "Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases.," *Hemoglobin*, vol. 32, no. 1–2, pp. 85–96, 2008, doi: 10.1080/03630260701699912.

[83] E. B. Fung, "Nutritional deficiencies in patients with thalassemia.," *Ann. N. Y. Acad. Sci.*, vol. 1202, pp. 188–196, Aug. 2010, doi: 10.1111/j.1749-6632.2010.05578.x.

[84] E. B. Fung, C. Aguilar, I. Micaily, D. Haines, and A. Lal, "Treatment of vitamin D deficiency in transfusion-dependent thalassemia," *Am. J. Hematol.*, vol. 86, no. 10, pp. 871–873, Oct. 2011, doi: 10.1002/ajh.22117.

[85] M. Pattanashetti, G. S. Pilli, A. Kaur, A. Singh, L. Kumar, and A. Prasad, "Anemia and Biochemical Profile of Thalassemia Patients," *Indian J. Pathol. Res. Pract.*, vol. 6, no. 2(Part-1), pp. 213–216, 2017, doi: 10.21088/ijprp.2278.148x.6217.7.

[86] F. Karim, A. K. M. M. Hasan, and H. U. Shekhar, "Hematological and biochemical status of Beta-thalassemia major patients in Bangladesh : A," vol. 10, no. 1, 2016.

[87] E. Eren and N. Yilmaz, "Biochemical markers of bone turnover and bone mineral density in patients with β -thalassaemia major," *Int. J. Clin. Pract.*, vol. 59, no. 1, pp. 46–51, 2005.

[88] A. T. Soliman, N. El Banna, M. A. Fattah, M. M. ElZalabani, and B. M. Ansari, "Bone mineral density in prepubertal children with β -thalassemia: correlation with growth and hormonal data," *Metabolism*, vol. 47, no. 5, pp. 541–548, 1998.

[89] R. M. Al Haddad, "Molecular, biochemical and hematological investigations of β -thalassemic children in gaza governorate," *Islam. Univ.*, 2012.

[90] I. Aslan *et al.*, "Bone mineral density in thalassemia major patients from Antalya, Turkey," *Int. J. Endocrinol.*, no. 1, pp. 573–298, 2012.

[91] R. Wirawan, S. Setiawan, and D. Gatot, "Peripheral blood and hemoglobin electrophoresis pattern in beta thalassemia major patients receiving repeated blood transfusion," *Med. J. Indones.*, vol. 13, no. 1, pp. 8–16, 2004.

[92] M. M. Uddin, S. Akteruzzaman, T. Rahman, A. K. M. M. Hasan, and H. U. Shekhar, "Pattern of β -Thalassemia and Other Haemoglobinopathies: A Cross-Sectional Study in Bangladesh," *ISRN Hematol.*, vol. 2012, p. 659191, 2012, doi: 10.5402/2012/659191.

[93] A. S. Warsy, M. A. F. El-Hazmi, A. Aleem, A. M. Al-Hazmi, and A. K. Al-Momin, "Genetic basis of Saudi beta thalassemia identification of Meditteranean and Asian mutations," *Biosci Biotechnol Res Asia*, vol. 9, pp. 97–104, 2012.

[94] S. Fadhil, A. A. Abdulla, and M. A. JEBOR, "Comparison of Heamatological Parameters and Serum Eezymes in β -Thalassmia Major Patients and Healthy Controls," *Int J Med Pharm Sci*, vol. 5, no. 6, 2015.

[95] A. Basem, "Hematological and Biochemical Investigations Of Beta thalassemia Major In Yemeni Children," 2017.

[96] B. Munir *et al.*, "Hematological and Biochemical indices of β -Thalassemia patients on deferiprone therapy," *Jokull J.*, vol. 63, no. 10, pp. 128–135, 2013.

[97] G. P. Mankad, B. Mankad, and S. P. Singh, "A study of serological and hematological parameters in thalassaemic patients of Rajkot, Gujarat," *Int. J. Sci. Res. Publ.*, vol. 3, no. 7, pp. 1–4, 2013.

[98] M. A. Fayed, H. E.-S. Abdel-Hady, M. M. Hafez, O. S. Salama, and Y. A. Al-Tonbary, "Study of platelet activation, hypercoagulable state, and the association with pulmonary hypertension in children with b-thalassemia," *Hematol. Oncol. Stem Cell Ther.*, vol. 11, no. 2, pp. 65–74, 2018.

[99] D. Yadav, J. Chandra, S. Sharma, and V. Singh, "Clinicohematological study of thrombocytosis," *Indian J. Pediatr.*, vol. 77, no. 6, pp. 643–647, 2010.

[100] R. Setiabudy, P. A. Wahidiyat, and L. Setiawan, "Platelet aggregation and activation in thalassemia major patients in Indonesia," *Clin. Appl. Thromb. Off. J. Int. Acad. Clin. Appl. Thromb.*, vol. 14, no. 3, pp. 346–351, Jul. 2008, doi: 10.1177/1076029607306397.

[101] M. D. Cappellini, E. Poggiali, A. T. Taher, and K. M. Musallam, "Hypercoagulability in β -thalassemia: a status quo.," *Expert Rev. Hematol.*, vol. 5, no. 5, pp. 505–11; quiz 512, Oct. 2012, doi: 10.1586/ehm.12.42.

[102] D. Aslan, F. Gümrük, A. Gürgey, and C. Altay, "Importance of RDW value in differential diagnosis of hypochromic anemias," *Am. J. Hematol.*, vol. 69, no. 1, pp. 31–33, Jan. 2002, doi: 10.1002/ajh.10011.

[103] R. Galanello and R. Origa, "Beta-thalassemia," *Orphanet J. Rare Dis.*, vol. 5, no. 1, p. 11, Dec. 2010, doi: 10.1186/1750-1172-5-11.

[104] L. D. Needs T, *Beta Thalassemia*. Treasure Island (FL): Stat Pearls.Stat Pearls Publishing, 2019.

[105] N. Madan, S. Sharma, S. K. Sood, and R. Colah, "Frequency of β -thalassemia trait and other hemoglobinopathies in northern and western India," *Indian J. Hum. Genet.*, vol. 16, no. 1, p. 16, 2010.

[106] M. K. Behera, "Chelation Status & Clinical Profile of Thalassemic Children Attending Paediatric Clinics Shyam Choudhari M K Behera," no. June, pp. 276–278, 2016.

[107] M. R. Debaun, M. Frei-Jones, and E. Vichinsky, “Thalassemia syndromes,” *Nelson Textb. Pediatr. 19th Ed. Philadelphia Elsevier Sanders*, pp. 1674–1677, 2011.

[108] O. S. Salama, Y. A. Al-Tonbary, R. A. Shahin, and O. A. S. Eldeen, “Unbalanced bone turnover in children with beta-thalassemia,” *Hematology*, vol. 11, no. 3, pp. 197–202, Jun. 2006, doi: 10.1080/10245330600702851.

[109] M. Saboor, F. Qudsia, K. Qamar, and M. Moinuddin, “Levels of calcium, corrected calcium, alkaline phosphatase and inorganic phosphorus in patients’ serum with β -thalassemia major on subcutaneous deferoxamine,” *J Hematol Thromb Dis*, vol. 2, no. 2, p. 130, 2014.

[110] A. Bazi, H. Harati, A. Khosravi-Bonjar, E. Rakhshani, and M. Delaramnasab, “Hypothyroidism and hypoparathyroidism in thalassemia major patients: a study in Sistan and Baluchestan Province, Iran,” *Int. J. Endocrinol. Metab.*, vol. 16, no. 2, 2018.

[111] S. Sultan, S. M. Irfan, and S. I. Ahmed, “Biochemical Markers of Bone Turnover in Patients with β -Thalassemia Major: A Single Center Study from Southern Pakistan,” *Adv. Hematol.*, vol. 2016, 2016, doi: 10.1155/2016/5437609.

[112] S. C. Bulgurcu, A. Canbolat Ayhan, H. C. Emeksiz, and F. Ovali, “Assessment of the Nutritional Status, Bone Mineralization, and Anthropometrics of Children with Thalassemia Major,” *Medeni. Med. J.*, vol. 36, no. 4, pp. 325–332, Dec. 2021, doi: 10.4274/MMJ.galenos.2021.66915.

[113] S. S. Handattu K, Aroor S, Kini P, Ramesh Bhat Y, Shivakumar G, Shastry P, “Metabolic bone disease in children with transfusion-dependent thalassemia,” *Indian Pediatr*, no. 59, pp. 920–3, 2022.

[114] K. P. Tangngam H, Mahachoklertwattana P, Poomthavorn P, Chuansumrit A, Sirachainan N, Chailurkit L, “Under-recognized hypoparathyroidism in thalassemia,” *J Clin Res Pediatr Endocrinol.*, no. 10, p. 324, 2018.

[115] et al. De Sanctis V, Soliman AT, Canatan D, “An ICET- a survey on hypoparathyroidism in patients with thalassaemia major and intermedia,” *a Prelim. report. Acta Biomed*, no. 88, pp. 435–44, 2018.

[116] Dr. Anika Agrawal, Dr Manisha Garg, Dr. Jagdish Singh, Dr Priyanshu Mathur, and Dr. Khurshida Khan, “A comparative study of 25 hydroxy vitamin D levels in patients of thalassemia and healthy children,” *Pediatr. Rev. Int. J. Pediatr. Res.*, vol. 3, no. 9 SE-Original Article, pp. 652–656, Sep. 2016, doi: 10.17511/ijpr.2016.i09.04.

[117] M. Peacock, “Calcium metabolism in health and disease,” *Clin. J. Am. Soc. Nephrol.*, vol. 5, no. Suppl 1, pp. S23–30, Jan. 2010, doi: 10.2215/CJN.05910809.

[118] A. A. Shamshirsaz et al., “Metabolic and endocrinologic complications in beta-thalassemia major: a multicenter study in Tehran,” *BMC Endocr. Disord.*, vol. 3, no. 1, p. 4, Aug. 2003, doi: 10.1186/1472-6823-3-4.

[119] A. Aleem, A. K. Al-Momen, M. S. Al-Harakati, A. Hassan, and I. Al-Fawaz, “Hypocalcemia due to hypoparathyroidism in beta-thalassemia major patients,” *Ann. Saudi Med.*, vol. 20, no. 5–6, pp. 364–366, 2000, doi: 10.5144/0256-4947.2000.364.

[120] G. Zamboni, P. Marradi, F. Tagliaro, R. Dorizzi, and L. Tatò, “Parathyroid hormone, calcitonin and vitamin D metabolites in beta-thalassaemia major,” *Eur. J. Pediatr.*, vol. 145, no. 1–2, pp. 133–136, Apr. 1986, doi: 10.1007/BF00441875.

[121] M. G. Vogiatzi, K. A. Autio, J. E. Mait, R. Schneider, M. Lesser, and P. J. Giardina, “Low bone mineral density in adolescents with beta-thalassemia,” *Ann. N. Y. Acad. Sci.*, vol. 1054, pp. 462–466, 2005, doi: 10.1196/annals.1345.063.

[122] P. Mahachoklertwattana, A. Chuansumrit, L. Choubtum, A. Sriprapradang, R. Sirisriro, and R. Rajatanavin, “Bone mineral density in children and young adults with beta-thalassemia trait,” *J. Pediatr. Endocrinol. Metab.*, vol. 15, no. 9, pp. 1531–1535, 2002, doi: 10.1515/jpem.2002.15.9.1531.

[123] M. Di Stefano et al., “Bone mass and metabolism in thalassemic children and adolescents treated with different iron-chelating drugs,” *J. Bone Miner. Metab.*, vol. 22, no. 1, pp. 53–57, 2004, doi: 10.1007/s00774-003-0449-z.

[124] M. Goyal, P. Abrol, and H. Lal, “Parathyroid and calcium status in patients with thalassemia,” *Indian J. Clin. Biochem.*, vol. 25, no. 4, pp. 385–387, Oct. 2010, doi: 10.1007/s12291-010-0071-5.

[125] R. M. Meshram, M. A. Salodkar, S. R. Yesambare, and S. M. Mohite, "Assessment of Serum Vitamin D and Parathyroid Hormone in Children With Beta Thalassemia Major: A Case-Control Study," vol. 16, no. 8, 2024, doi: 10.7759/cureus.66146.

[126] P. Ayfer, "Parathyroid Functions in Thalassemia Major Patients," pp. 15–19, 2017.

[127] A. Bashir, K. Habib, A. Lail, M. A. Shah, N. A. Memon, and Z. A. Dahri, "Status of vitamin D and evaluation of growth parameters seen in the children suffering from thalassemia major," *Pakistan J. Med. Heal. Sci.*, vol. 17, no. 05, p. 587, 2023.

[128] F. M. Fahim, K. Saad, E. A. Askar, E. N. Eldin, and A. F. Thabet, "Growth parameters and vitamin D status in children with thalassemia major in upper Egypt," *Int. J. Hematol. stem cell Res.*, vol. 7, no. 4, p. 10, 2013.

[129] J. C. Wood *et al.*, "Vitamin D deficiency, cardiac iron and cardiac function in thalassaemia major," *Br. J. Haematol.*, vol. 141, no. 6, pp. 891–894, 2008.

[130] M. Pala, K. G. Bhat, S. Manya, N. Joseph, and S. Harish, "Vitamin D levels and left ventricular function in beta - thalassemia major with iron overload," *Eur. J. Pediatr.*, pp. 1749–1754, 2023, doi: 10.1007/s00431-023-04830-7.

[131] D. Hazarika, C. R. Buragohain, A. K. Nath, and P. Biswanath, "Vitamin D status in children with thalassaemia in Northeast India," *J Evid Based Med Heal.*, vol. 3, no. 96, pp. 5262–5266, 2016.

[132] S. Dhale, S. Valinjkar, J. Janardhan, and S. Walhekar, "Study of vitamin D levels in thalassemia major patients in children," *J Med Sci Clin Res*, vol. 7, no. 7, pp. 2445–2450, 2019.

[133] M. R. Akhouri and D. Neha, "Assessment of Vitamin D status and growth parameters in thalassemia major patients," *IOSR J Dent Med Sci*, vol. 16, no. 05, pp. 57–60, 2017.

[134] S. Malik, S. Syed, and N. Ahmed, "Complications in transfusion-dependent patients of β -thalassemia major: A review," *Pakistan J. Med. Sci.*, vol. 25, pp. 678–682, Jul. 2009.

[135] S. Tsitoura, N. Amarilio, P. Lapatsanis, S. Pantelakis, and S. Doxiadis, "Serum 25-hydroxyvitamin D levels in thalassaemia," *Arch. Dis. Child.*, vol. 53, no. 4, pp. 347–348, Apr. 1978, doi: 10.1136/adc.53.4.347.

[136] A. G. Pirinçioğlu, V. Akpolat, O. Köksal, K. Haspolat, and M. Söker, "Bone mineral density in children with beta-thalassemia major in Diyarbakir," *Bone*, vol. 49, no. 4, pp. 819–823, Oct. 2011, doi: 10.1016/j.bone.2011.07.014.

[137] I. Qaisar, A. Rehman, and K. S. Jillani, "Assessment of nutritional status of children with beta thalassemia major with BMI," in *Medical Forum Monthly*, 2020, vol. 31, no. 1.

[138] U. Yu *et al.*, "Evaluation of the vitamin D and biomedical statuses of young children with β -thalassemia major at a single center in southern China," *BMC Pediatr.*, vol. 19, no. 1, p. 375, 2019.

[139] S. U. Basha NKP, Shetty B, "Prevalence of Hypoparathyroidism (HPT) in Beta Thalassemia Major," *J Clin Diagn Res.*, no. 8, pp. 24–26., 2014.

[140] B. K. Bielinski *et al.*, "Impact of disordered puberty on bone density in β -thalassaemia major," *Br. J. Haematol.*, vol. 120, no. 2, pp. 353–358, 2003.

[141] N. Napoli, E. Carmina, S. Bucchieri, C. Sferrazza, G. B. Rini, and G. Di Fede, "Low serum levels of 25-hydroxy vitamin D in adults affected by thalassemia major or intermedia," *Bone*, vol. 38, no. 6, pp. 888–892, 2006.

[142] R. Bajoria, E. Rekhi, M. Almusawy, and R. Chatterjee, "Hepatic hemosiderosis contributes to abnormal vitamin D-PTH axis in thalassemia major," *J. Pediatr. Hematol. Oncol.*, vol. 41, no. 2, pp. e83–e89, 2019.

مقالة بحثية

الاختلالات الدموية واضطرابات استقلاب العظام لدى الأطفال والراهقين المصابين بالثلاسيميا بيتا الكبري

أفراح صالح سعد صالح راجح^{1,*}، و جمال عبد الحميد^{1,2,3}¹ قسم المختبرات الطبية، كلية الطب والعلوم الصحية، جامعة عدن، اليمن² كلية الطب والعلوم الصحية، جامعة عدن، اليمن، البريد الإلكتروني: drgamel2000@yahoo.com³ مدير المركز الوطني لأمراض الدم والأورام /المدير العام للبرنامج الوطني لمكافحة السرطان، اليمن⁴ رئيس الأكاديمية العالمية للعلوم الطبية (WAMS)، اليمن

* الباحث الممثل: أفراح صالح سعد صالح راجح؛ البريد الإلكتروني: afrahragh52@gmail.com

استلم في: 08 نوفمبر 2025 / قبل في: 24 نوفمبر 2025 / نشر في 31 ديسمبر 2025

الملخص

تعدّ بيتا ثلاسيميا الكبري (TM) من أمراض اضطراب تصنيع الهيموغلوبين المعتمدة على نقل الدم، وتميز بانخفاض فعالية تكون كريات الدم الحمراء وترانك الحديد بشكل تدريجي. وعلى الرغم من التطورات في نظم نقل الدم والعلاج بالاستخراج، ما زالت أمراض العظام الأيضية من المضاعفات الشائعة والمنهكة لدى المرضى صغار السن. تقييم المؤشرات الدموية والعلامات الكيميائية الحيوية لتمثيل العظام لدى الأطفال والراهقين (≥ 21 سنة) المصابين بيتا ثلاسيميا الكبري الذين يتبعون في قسم الأطفال بالمركز الوطني للأورام – عدن، خلال الفترة من يناير إلى ديسمبر 2022. أجريت دراسة تحليلية مقتطعية على 40 مريضاً يعتمدون على نقل الدم بشكل دوري. خضع المرضى لفحوصات شاملة تضمنت تعداد الدم الكامل، وقياس مستويات الفيريتين، وفيتامين (25-OH) D، وهرمون جار الدرقية (PTH)، والكالسيوم، والفوسفور في المصل. تم تحليل الإحصاءات الوصفيّة وتوزيعات المتغيرات مقارنة بالقيم المرجعية. أظهرت العينة فقر دم مزمن شديد (متوسط Hb 6.72 \pm 1.77 جم/دل؛ متوسط 21.7 \pm 6.1 %) مع صغر حجم كريات الدم الحمراء (73.5 ± 6.54 مفنتوليت) وتفاوت كبير في حجمها (21.61 \pm 7.00 %). بلغ متوسط عدد الكريات البيضاء $10^3 \times 10.8$ /ميكرولتر، حيث لوحظت الكريات البيضاء المرتفعة في 60% من المرضى، كما كان عدد الصفائح الدموية مرتفعاً (463.47 ± 281.4 $\times 10^3$ /ميكرولتر). سُجلت زيادة مفرطة في الحديد (متوسط الفيريتين 3718.9 ± 2453.8 نانوغرام/مل)، مع تجاوز 92.5% من المرضى لقيم الطبيعية، و 77.5% ضمن الفئة العالية أو الشديدة (≤ 2000 نانوغرام/مل). كانت نقص أو قصور فيتامين D شائعة بدرجة كبيرة (متوسط 9.96 \pm 23.85 نانوغرام/مل؛ 47.5% مصابون بنقص، و 27.5% بقصور، و 25% ضمن المستوى الكافي). كشفت التحاليل الكيميائية الحيوية عن اضطراب في توازن المعادن تمثل في انخفاض الكالسيوم لدى 55% من المرضى، وانخفاض هرمون جار الدرقية لدى 40%， وارتفاع الفوسفور لدى 45%. تشير هذه النتائج مجتمعة إلى وجود علاقة قوية بين فرط تراكم الحديد، والخلل الغذائي، واضطراب استقلاب معادن العظام. يُظهر الأطفال والراهقون المصابون بيتا ثلاسيميا الكبري في هذه الدراسة فقر دم شديداً، وترانك مفرطاً للحديد، وانشاراً واسعاً لنقص فيتامين D، واضطرابات متكررة في محور الكالسيوم-الفوسفور-PTH، وهي عوامل تُهيئ لحدوث أمراض العظام الأيضية. لذلك، تُعد الاستراتيجيات المبكرة والمتكاملة — التي تشمل ضبط الحديد بدقة، والقيم الدوري للغدد الصماء، وتحسين حالة فيتامين D، والمتابعة المنتظمة لصحة العظام — ضرورية للحد من المضاعفات الهيكلية طوبلة الأمد في هذه الفئة من المرضى.

الكلمات المفتاحية: بيتا ثلاسيميا كبري؛ تراكم الحديد؛ استقلاب العظام؛ نقص فيتامين D؛ نقص الكالسيوم؛ هرمون جار الدرقية؛ الأطفال.

How to cite this article:

A. S. S. S. Rajeh, and G. Abdul-Hamid, “HEMATOLOGICAL AND BONE METABOLISM ABNORMALITIES IN CHILDREN AND ADOLESCENTS WITH B-THALASSEMIA MAJOR”, *Electron. J. Univ. Aden Basic Appl. Sci.*, vol. 6, no. 4, pp. 252-264, Dec. 2025. DOI: <https://doi.org/10.47372/ejua-ba.2025.4.477>

Copyright © 2025 by the Author(s). Licensee EJUA, Aden, Yemen. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC 4.0) license.