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Abstract

This paper investigates the geometric structure of generalized BK-fifth recurrent Finsler spaces and analyzes
the behavior of the associated curvature tensors under higher-order Berwald covariant derivatives. Using the
Kulkarni—-Nomizu product, several recurrence conditions are established for curvature expressions involving
the K-, R-, H-, W-, and P-tensors. The results show that, under the condition An=1/2, the fifth-order Berwald
derivative of these tensors coincides with the fourth-order derivative, indicating a strong form of high-order
geometric invariance. From an engineering perspective, such invariance provides a rigorous mathematical
foundation for Finsler-based modeling in geometric control and robotic motion planning, where stable
curvature structures enhance robustness in nonlinear stabilization, trajectory tracking, and anisotropic path
optimization.
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1. Introduction

Finsler geometry has undergone extensive development
since its early formulation by Finsler [1] and the
subsequent geometric foundations established by Cartan
[2], Berwald [3], and Rund [4]. Unlike Riemannian
geometry, where the metric depends solely on position,
Finsler geometry allows the metric to vary with both
position and direction, offering a more general
framework with significant flexibility. Modern
treatments such as those presented by Shen [5],
Matsumoto [6], the study of recurrent geometric
properties within this framework has also progressed,
beginning with early analyses of recurrent tensors in
Finsler spaces by Prasad and Agarwal [7], and Chern—
Shen [8] have contributed to the advancement of the
theory and its specialized structures, and later expanded
through the formulation of tensor calculus and geometric
tools in Agarwal’s work [9].

In recent years, recurrent and higher-order recurrent
Finsler spaces have attracted considerable attention,
particularly within the context of generalized BK-

structures. Several contributions by AL-Qashbari and
collaborators have established a comprehensive
foundation for understanding generalized BK-recurrent
and BK-fifth recurrent Finsler spaces, including higher-
order recurrence conditions [10] to [17]. These works
investigated Lie derivatives of various curvature tensors,
the inheritance of Kulkarni-Nomizu products,
extensions of generalized BK-recurrent structures, and
relations among projective curvature tensors. Their
findings illuminate the behavior of curvature tensors
such as the K-, R-, H-, and M-projective tensors under
successive covariant differentiations, providing a deeper
understanding of the intrinsic geometric structure of
these spaces. Complementary studies have explored
related differential operations and curvature behaviors in
other settings, such as fluid mechanics and hypersurface
geometry, highlighting the broad applicability of Lie
derivatives in geometric analysis [19], [22].

The general theory of curvature in Finsler geometry has
also been enriched by foundational works on
comparative geometry and advanced metric structures by
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Opondo [20], Ohta [21], Bao et al. [18], and Pandey et
al. [23]. Furthermore, geometric investigations such as
those by Shaikh et al. [24] show how curvature-related
properties appear in diverse physical models, including
black hole spacetimes. These studies collectively
emphasize the importance of recurrent curvature
identities and the stability of geometric structures under
repeated covariant differentiation.

Higher-order recurrence particularly in generalized BK-
fifth recurrent Finsler spaces plays a central role in
characterizing the invariance of curvature tensors under
successive Berwald derivatives. Understanding when
higher-order derivatives collapse into lower-order ones
yields insights into geometric stability, tensor
symmetries, and structural consistency. Such properties
are not only mathematically significant but also
increasingly relevant for engineering applications,
including geometric control, robotic navigation, and
modeling of anisotropic dynamical systems, where
direction-dependent metrics provide essential flexibility.
Motivated by these mathematical foundations and the
expanding relevance of curvature-based models, this
paper investigates the behavior of multiple curvature
tensors in generalized BK-fifth recurrent Finsler spaces.
Special attention is given to the recurrence and
inheritance of Kulkarni—-Nomizu products involving the
K-, R-, H-, W-, and P-tensors under higher-order
Berwald covariant derivatives. The goal is to establish
conditions under which the fifth Berwald derivative
coincides with the fourth, revealing structural
invariances that extend and unify previous developments
in recurrent Finsler geometry.

2. Preliminaries

This section establishes the fundamental mathematical
framework necessary for the analysis of generalized BK-
fifth recurrent Finsler spaces (GBK-5RF,,). It introduces
higher-order recurrence relations for the Riemann-
Finsler curvature tensor and formulates the conditions
under which these tensors exhibit fifth-order recurrence,
providing the foundation for subsequent results. The
definitions of the Kulkarni-Nomizu product and
associated curvature tensors, including K;jxp, , P;jxn » and
Wijkn , are presented to formalize the structure of these
spaces. Additionally, the section details the Lie
derivative of mixed tensor fields and the properties of the
Berwald covariant derivative, which are essential tools
for analyzing the behavior of curvature tensors under
successive differentiation. Key results, such as the
recurrence relations of Cartan’s third and fourth
curvature tensors and the Berwald curvature tensor, are
summarized to facilitate the derivation of main theorems.
Overall, this section provides a rigorous foundation
linking tensor calculus, Lie derivatives, and higher-order
geometric invariants in GBK-5RF,,, ensuring clarity and

consistency in the treatment of complex curvature
behaviors.

Let us explore a generalized BK-fifth recurrent Finsler
space(GBK — 5RE,) satisfying the following relations:

(21)  ByByBiBnBmRijkn = AsqinmRijin »
if and only if
(2.2) bsqlnm( Inj9ix — gkjgih)
— 2bginmY" B (9n;Ciks — 9iejCins
— Csqunm (GnjCikn — GijCinn)
— dsqinm(9n;Cirt — IijCint)
— esqunm (9n;Cikg — IxjCing)
+BquBanBm(CithI€h) - asqlnm(cithlgh) =0.

The Kulkarni-Nomizu product (A A U) of two (0,2)-
type summetric tensors A and U is defined as

(23) (A VAN U)ijkh = AihUjk - AikUjh
+Aj Uiy, — Ajp Ui -

The associate curvature tensors Kjjyp, Pijkn and Wijp
satisfying the following relations

1
(24)  Kijkn = Rijkn — -2 (A A U)ijkh :

1
(2.5) Pijkn = Rijkn — E(Aihujk - AjhUik) .

[
(26)  Wijkn = Rijin — 5 (4 /\A)l.jkh ,

2n(n—-1)
(where c is constant).

The Lie-derivative of a general mixed tensor field ﬁch
is given by
(2.7) LvTjikh =v" Bp T]lkh — Tiin Bm vt

+Trinkh. ijm + T]Lmh Bkvm

+ T BaV™ + O Tin, B,v™y™ , Where v™ = 0.

The Berwald covariant derivative of the contravariant
vector field v™ vanish identically, i.e:
(28) Bv™ =
The Cartan's fourth curvature tensor ]-"kh, Cartan's third
curvature tensor R}kh and the curvature tensor of
Berwald H},, in recurrent Finsler space is defined as

BmK}kh = /1ijikh ) BmR;kh = /lmR}kh '
and  ByHiyy = AnHjyy -

Contracting the indices i and o in above equation, we
get

(2.9) a) Bijk=/1ijk , b) 'Bijkzlijk )
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and  ¢) BpHj = AnHy, .

3. Fifth-Order Berwald Covariant
Derivatives of Kulkarni-Nomizu Products
in GBK-5REF,, Spaces

This section presents the main theoretical contributions
regarding the behavior of Kulkarni-Nomizu products
and associated curvature tensors in generalized BK-fifth
recurrent Finsler spaces (GBK-5RF,,).

We systematically investigate the fifth-order Berwald
covariant derivatives of the Kulkarni-Nomizu products
formed by K-Ricci, R-Ricci, and H-Ricci tensors,
establishing conditions under which these products
exhibit fifth-order recurrence. The section further
explores the Lie derivatives of these tensor products and
their relationships with the fourth-order covariant
derivatives, leading to a series of theorems and
corollaries that characterize the recurrent behavior of
associated curvature tensors Kijxp , Pjxn, and Wiy, .
Additionally, we highlight special cases where symmetry
in the Kulkarni-Nomizu products leads to vanishing
fifth-order derivatives, emphasizing the interplay
between tensor symmetries and higher-order geometric
invariants. Overall, this section provides a rigorous
analytical framework that connects tensor algebra, Lie
derivatives, and higher-order Berwald derivatives, laying
the groundwork for the derivation of the main results.

Let us consider Kulkarni-Nomizu product of K-Ricci
tensor and R-Ricci tensor (K A R);jp, defined as (2.3),
then we have

(3.1) (KAR)ijkn = KinRji — KixRj,
+Kj Rip — Kin Ry -
Taking the Lie -derivative of both sides of above
equation, we get
L,(K AR)jkn = RjxLyKin + Kin L, Ry
—RjpL, Ky — Ky LR},
+ RipLyKj + Kj L, Rip — Ry LyKjp, — Kip Ly Ry
Using (2.7) and (2.8) in above equation, we get
B (KA R)ijkh = Ry B Kip + Kin B Rjx — Rijpn B Kix
—KiyBmRjn + RinBnKj + K B Rin — Rix B K
— Kin B Ry, -
Using [(2.9)a,b] in above equation, we get
B (K AR)ijkn = 2Am[KinRjx — KiRjn + KjiRin
— KipRix]

Let A, = % and taking Berwald covariant derivative of

fourth order for above equation with respect to x™,
x!, x%and x°, we get

BBy BBy Bin (K AR)ijkn = BsByB By [KinRjx —
KixRjn + KijxRipp — Kip Ry ] -

Using (3.1) in above equation, we get
(3.2) BsByBiBynBm (K AR)ijkn

= BsByB B (K AR)jjkn -
Thus, we conclude

Theorem 3.1: In GBK — 5RF,, the Berwald covariant
derivative of fifth order is equal the Berwald covariant
derivative of fourth order for the Kulkarni- Nomizu

product (K A R)jxy, if the covariant vector A,, = %

Now, we have two corollaries related to the previous
theorem. Using the same steps as in the previous
theorem, by taking the Kulkarni-Nomizu
product (R A H);jin and (K A H);j, respectively, by
using [(2.9) a,b,c] we obtain

Corollary 3.1: In GBK — 5RF, , the Berwald covariant

derivative of fifth order is equal the Berwald covariant
derivative of fourth order for the Kulkarni- Nomizu

product (R A H)jp, if the covariant vector A,, = % .

Corollary 3.2: In GBK — 5RE,, the Berwald covariant
derivative of fifth order is equal the Berwald covariant
derivative of fourth order for the Kulkarni- Nomizu

product (K A H);jxp, if the covariant vector 4,, = %

Using the Kulkarni- Nomizu product of K- Ricci tensor
and R-Ricci tensor (K A R)jyp, in (2.4), we have

1
(3.3)  Kijkn = Rijkn — rewy (K AR)ijkn -

Taking the Lie - derivative of both sides of above
equation and using (2.7) and (2.8), we get

1
mBm(K/\ R)ijkn -

Taking Berwald covariant derivative of fourth order for
above equation with respect to x™, x!, x9 and x°, we
get

BmKijkn = BmRijkn —

Bqu BZBanKijkh = Bqu BanBmRijkh

1
S 2 BsBqBiBnBm (K A R)jjkn -

Using (2.1) in above equation, we get

(3.4) BquBanBmKijkh = asqlnmRijkh

1
~ i Bsqinm (K AR)ijkn »

if and only if
(3.5) BsByB;ByBin (K AR)ijkn = Asqinm (K AR)jkn -

Above equation means that the Kulkarni-Nomizu
product (K A R);jk, behaves as fifth recurrent.

Now, using (3.3) in right side of (3.4) we get
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(3.6) BquBanBmKijkh = asqlanijkh .
Thus, we conclude

Theorem 3.2: In GBK — 5RF, , the associate curvature
tensor K of the curvature tensor Kjikh behaves as fifth
recurrent if and only if the Kulkarni-Nomizu product
(K A R);jkn behaves as fifth recurrent [provided (2.2)
holds].

Using the Kulkarni- Nomizu product of K- Ricci tensor
with itself in (2.6), we have

c
(3.7) Wijkn = Rijkn — m(l{/\ K)ijkh

Taking the Lie - derivative of both sides of above
equation and using (2.7) and (2.8), we get

BmWijkn = BmRijkn — m(K/\ K),

2( ijkh *

Taking Berwald covariant derivative of fourth order for
above equation with respect to x™, x!, x?and x°, we
get

By B, B,BnBmWijin = BsByBiBnBmRijin

———BB,BB,Bn(K NK),

Zn(n 1) ijkh *

Using (2.1) in above equation, we get
(3.8) BsByBiBpyBimWijkn = AsqinmRijkn

c

T 2nn-1) asqlnm(K/\ )l]kh !

if and only if
(3.9) BBy B, Bn B (K A K)jjien

= Asqinm K AK)ijkn -
Now, using (3.7) in right side of (3.8), we get
(3.10) BsB;B,ByBuWijkn = AsqinmWijkn -
Thus, we conclude

Corollary 3.3: In GBK — 5RE,, the associate curvature
tensor W, of the curvature tensor le}(h behaves as
fifth recurrent if and only if the Kulkarni-Nomizu
product (K A K);jx, behaves as fifth recurrent [provided
(2.2) holds].

Using the K-Ricci tensor and H-Ricci tensor in (2.5), we
have
(311) Pijkn = Rijin — (n 5 — (KinHjie = KjnHix) -

Taking the Lie - derivative of both sides of above
equation and using (2.7) and (2.8), we get

1
BmPijkn = BnRijkn — mBm(Kithk — KinHy,) .

Taking Berwald covariant derivative of fourth order for
above equation with respect to x®, x!, x% and x5, we
get

BquBanBmPijkh = BquBanBmRijkh

1
_ﬁ BquBanBm(Kithk - thHik) .
Using (2.1) in above equation, we get

(312) BSB BanBmPijkh = asqlnmRijkh

(n D asqlnm(th - thHik) ’

if and only if
(3.13) ByByB By B (KinHjx — KinHu)

= Asqunm (KinHjxe — KjnHir) -
Now, using (3.11) in right side of (3.12), we get
(3.14) B;B;B,ByBPijkn = AsqinmPijkn -
Thus, we conclude

Corollary 3.4: In GBK — 5RE,, the associate curvature
tensor P;j;, of the curvature tensor Pjikh behaves as fifth
recurrent if and only if the tensor (Ky,Hj, — KnHy)
behaves as fifth recurrent [provided (2.2) holds].

Now, if the the Kulkarni-Nomizu product of K-Ricci
tensor and R-Ricci tensor (K A R);jp, is symmetric in its
indices i and j , then the equation (3.1), can be written
as

(K/\R)ijkh = 0 .

Taking the Lie-derivative of both sides of above equation
and using (2.7) and (2.8), then taking Berwald covariant
derivative of fourth order for result equation with respect
to x™, x, x9and x%, we get

(3.15) ByB,B;ByBn(K AR)jxn =0 .
Thus, we conclude

Theorem 3.3: In GBK — 5RF,, the Berwald covariant
derivative of fifth order for the Kulkarni-Nomizu product
(K AR);jin is vanishing if it symmetric in its indices i
and j.

4. Engineering Applications

The mathematical results obtained in this work on GBK-
fifth recurrent Finsler spaces provide significant
implications for modern engineering systems modeled
by Finsler-type geometries. The demonstrated
equivalence between the fifth-order and fourth-order
Berwald covariant derivatives of various Kulkarni-
Nomizu curvature products such as (KR)jkn,
(RH)ijkn » (KH)ijkn » (KK);jkn reveals a high degree of
geometric stability and structural invariance of the
underlying curvature tensors.

Such properties are of substantial value in engineering
fields where nonlinear dynamics evolve in non-
Euclidean geometric environments.
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In geometric control theory, Finsler metrics have
recently emerged as powerful tools to model anisotropic
and non-linear cost structures.

The recurrence conditions established in this paper imply
that the associated curvature tensors preserve their form
under higher-order Berwald differentiations, which
corresponds to a type of dynamic invariance desirable in
systems governed by repeated or prolonged control
actions.

This invariance directly enhances the robustness of
stabilization, tracking, and regulation in nonlinear
control systems.

In robotic motion planning, particularly for autonomous
systems operating in heterogeneous or direction-
dependent environments, Finsler geometry provides
more realistic models than classical Riemannian
approaches.

The recurrence of the Kulkarni-Nomizu curvature
products ensure the persistence of curvature-based
constraints along optimal trajectories, contributing to
trajectory stability, reduced computational sensitivity,
and consistent geometric behavior of the robot’s velocity
and acceleration fields.

Moreover, the vanishing conditions such as the
symmetry-induced relation (KR);jx, = 0 indicate deep
geometric symmetries that can be exploited in
mechanical design, swarm coordination, and multi-agent
engineering systems.

These structures can be interpreted as indicators of
inherent balance, energy symmetry, or geometric
conservation within the mechanical system.

Thus, the theoretical contributions of this paper provide
a rigorous geometric framework that strengthens the
mathematical foundation underlying several engineering
technologies based on Finsler geometric modeling,
including but not limited to:

1. geometric nonlinear control,

2. autonomous robot navigation,
3. optimal path-planning,
4

. and stability analysis of anisotropic mechanical
systems.

5. Conclusions

In this work, we examined the structure of generalized
BK-fifth recurrent Finsler spaces GBK-5RF, and
established several recurrence relations for curvature
tensors derived from the Kulkarni—-Nomizu product.

The main results demonstrate that, under the condition
Am = i the fifth-order Berwald covariant derivative of

the curvature products (KR);jxn, (RH)ijkn (KH)ijkn »
and (KK);jx, coincides with their fourth-order
derivative. This indicates a strong form of high-order
geometric invariance, showing that these curvature
structures remain stable under repeated geometric
differentiations.

Additionally, the necessary and sufficient conditions
obtained for the recurrence of the associated curvature
tensors K;jxn , Wijkn » Pijinreinforce the presence of deep
geometric symmetries within these Finsler spaces. From
an engineering standpoint, such high-order curvature
invariance provides a solid mathematical foundation for
several applications involving geometric modeling of
nonlinear dynamical systems.

In geometric control theory, the recurrence of curvature
tensors implies persistent geometric constraints that
enhance the robustness of stabilization and trajectory
tracking.

In robotic motion planning, these results support the
development of Finsler-based path-planning algorithms
capable of maintaining consistent geometric behavior in
anisotropic or direction-dependent environments.

The vanishing and symmetry conditions derived in this
work further highlight geometric properties that can be
exploited in  mechanical systems, multi-agent
coordination, and navigation algorithms.

Thus, the theoretical developments presented here not
only advance the study of recurrent Finsler geometry but
also provide relevant mathematical tools for engineering
systems operating in non-Euclidean geometric
frameworks, particularly in control, robotics, and motion
stability analysis.
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