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Abstract 

This paper investigates the geometric structure of generalized BK-fifth recurrent Finsler spaces and analyzes 

the behavior of the associated curvature tensors under higher-order Berwald covariant derivatives. Using the 

Kulkarni–Nomizu product, several recurrence conditions are established for curvature expressions involving 

the K-, R-, H-, W-, and P-tensors. The results show that, under the condition λm=1/2, the fifth-order Berwald 

derivative of these tensors coincides with the fourth-order derivative, indicating a strong form of high-order 

geometric invariance. From an engineering perspective, such invariance provides a rigorous mathematical 

foundation for Finsler-based modeling in geometric control and robotic motion planning, where stable 

curvature structures enhance robustness in nonlinear stabilization, trajectory tracking, and anisotropic path 

optimization. 

Keywords: Finsler geometry; Berwald covariant derivative; Kulkarni–Nomizu product; Robotic motion 

planning; Nonlinear dynamical systems. 
 

 

1. Introduction 

Finsler geometry has undergone extensive development 

since its early formulation by Finsler [1] and the 

subsequent geometric foundations established by Cartan 

[2], Berwald [3], and Rund [4]. Unlike Riemannian 

geometry, where the metric depends solely on position, 

Finsler geometry allows the metric to vary with both 

position and direction, offering a more general 

framework with significant flexibility. Modern 

treatments such as those presented by Shen [5], 

Matsumoto [6], the study of recurrent geometric 

properties within this framework has also progressed, 

beginning with early analyses of recurrent tensors in 

Finsler spaces by Prasad and Agarwal [7], and Chern–

Shen [8] have contributed to the advancement of the 

theory and its specialized structures, and later expanded 

through the formulation of tensor calculus and geometric 

tools in Agarwal’s work [9]. 

In recent years, recurrent and higher-order recurrent 

Finsler spaces have attracted considerable attention, 

particularly within the context of generalized BK-

structures. Several contributions by AL-Qashbari and 

collaborators have established a comprehensive 

foundation for understanding generalized BK-recurrent 

and BK-fifth recurrent Finsler spaces, including higher-

order recurrence conditions [10] to [17]. These works 

investigated Lie derivatives of various curvature tensors, 

the inheritance of Kulkarni–Nomizu products, 

extensions of generalized BK-recurrent structures, and 

relations among projective curvature tensors. Their 

findings illuminate the behavior of curvature tensors 

such as the K-, R-, H-, and M-projective tensors under 

successive covariant differentiations, providing a deeper 

understanding of the intrinsic geometric structure of 

these spaces. Complementary studies have explored 

related differential operations and curvature behaviors in 

other settings, such as fluid mechanics and hypersurface 

geometry, highlighting the broad applicability of Lie 

derivatives in geometric analysis [19], [22]. 

The general theory of curvature in Finsler geometry has 

also been enriched by foundational works on 

comparative geometry and advanced metric structures by 
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Opondo [20], Ohta [21], Bao et al. [18], and Pandey et 

al. [23]. Furthermore, geometric investigations such as 

those by Shaikh et al. [24] show how curvature-related 

properties appear in diverse physical models, including 

black hole spacetimes. These studies collectively 

emphasize the importance of recurrent curvature 

identities and the stability of geometric structures under 

repeated covariant differentiation. 

Higher-order recurrence particularly in generalized BK-

fifth recurrent Finsler spaces plays a central role in 

characterizing the invariance of curvature tensors under 

successive Berwald derivatives. Understanding when 

higher-order derivatives collapse into lower-order ones 

yields insights into geometric stability, tensor 

symmetries, and structural consistency. Such properties 

are not only mathematically significant but also 

increasingly relevant for engineering applications, 

including geometric control, robotic navigation, and 

modeling of anisotropic dynamical systems, where 

direction-dependent metrics provide essential flexibility. 

Motivated by these mathematical foundations and the 

expanding relevance of curvature-based models, this 

paper investigates the behavior of multiple curvature 

tensors in generalized BK-fifth recurrent Finsler spaces. 

Special attention is given to the recurrence and 

inheritance of Kulkarni–Nomizu products involving the 

K-, R-, H-, W-, and P-tensors under higher-order 

Berwald covariant derivatives. The goal is to establish 

conditions under which the fifth Berwald derivative 

coincides with the fourth, revealing structural 

invariances that extend and unify previous developments 

in recurrent Finsler geometry. 

2. Preliminaries 

This section establishes the fundamental mathematical 

framework necessary for the analysis of generalized BK-

fifth recurrent Finsler spaces (GBK-5RF𝑛). It introduces 

higher-order recurrence relations for the Riemann-

Finsler curvature tensor and formulates the conditions 

under which these tensors exhibit fifth-order recurrence, 

providing the foundation for subsequent results. The 

definitions of the Kulkarni-Nomizu product and 

associated curvature tensors, including 𝐾𝑖𝑗𝑘ℎ  , 𝑃𝑖𝑗𝑘ℎ  , and 

𝑊𝑖𝑗𝑘ℎ  , are presented to formalize the structure of these 

spaces. Additionally, the section details the Lie 

derivative of mixed tensor fields and the properties of the 

Berwald covariant derivative, which are essential tools 

for analyzing the behavior of curvature tensors under 

successive differentiation. Key results, such as the 

recurrence relations of Cartan’s third and fourth 

curvature tensors and the Berwald curvature tensor, are 

summarized to facilitate the derivation of main theorems. 

Overall, this section provides a rigorous foundation 

linking tensor calculus, Lie derivatives, and higher-order 

geometric invariants in GBK-5RF𝑛, ensuring clarity and 

consistency in the treatment of complex curvature 

behaviors. 

Let us explore a generalized ℬ𝐾-fifth recurrent Finsler 

space(𝐺ℬ𝐾 − 5𝑅𝐹𝑛) satisfying the following relations: 

(2.1)       ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑅𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚𝑅𝑖𝑗𝑘ℎ  , 

if and only if 

(2.2)  𝑏𝑠𝑞𝑙𝑛𝑚( 𝑔ℎ𝑗𝑔𝑖𝑘 − 𝑔𝑘𝑗𝑔𝑖ℎ) 

         − 2𝑏𝑞𝑙𝑛𝑚𝑦𝑟ℬ𝑟(𝑔ℎ𝑗𝐶𝑖𝑘𝑠 − 𝑔𝑘𝑗𝐶𝑖ℎ𝑠) 

         − 𝑐𝑠𝑞𝑙𝑛𝑚(𝑔ℎ𝑗𝐶𝑖𝑘𝑛 − 𝑔𝑘𝑗𝐶𝑖ℎ𝑛) 

          − 𝑑𝑠𝑞𝑙𝑛𝑚(𝑔ℎ𝑗𝐶𝑖𝑘𝑙 − 𝑔𝑘𝑗𝐶𝑖ℎ𝑙) 

         − 𝑒𝑠𝑞𝑙𝑛𝑚(𝑔ℎ𝑗𝐶𝑖𝑘𝑞 − 𝑔𝑘𝑗𝐶𝑖ℎ𝑞) 

        +ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐶𝑖𝑗𝑡𝐻𝑘ℎ
𝑡 ) − 𝑎𝑠𝑞𝑙𝑛𝑚(𝐶𝑖𝑗𝑡𝐻𝑘ℎ

𝑡 ) = 0 . 

The Kulkarni-Nomizu product  (𝐴 𝑈)  of two (0,2)-

type summetric tensors A and U is defined as 

(2.3)  (𝐴 𝑈)
𝑖𝑗𝑘ℎ

= 𝐴𝑖ℎ𝑈𝑗𝑘 − 𝐴𝑖𝑘𝑈𝑗ℎ 

          +𝐴𝑗𝑘𝑈𝑖ℎ − 𝐴𝑗ℎ𝑈𝑖𝑘  . 

The associate curvature tensors  𝐾𝑖𝑗𝑘ℎ , 𝑃𝑖𝑗𝑘ℎ  and  𝑊𝑖𝑗𝑘ℎ 

satisfying the following relations 

(2.4)       𝐾𝑖𝑗𝑘ℎ = 𝑅𝑖𝑗𝑘ℎ −
1

(𝑛−2)
(𝐴 𝑈)

𝑖𝑗𝑘ℎ
 . 

(2.5)       𝑃𝑖𝑗𝑘ℎ = 𝑅𝑖𝑗𝑘ℎ −
1

(𝑛−1)
(𝐴𝑖ℎ𝑈𝑗𝑘 − 𝐴𝑗ℎ𝑈𝑖𝑘)   . 

(2.6)       𝑊𝑖𝑗𝑘ℎ = 𝑅𝑖𝑗𝑘ℎ −
𝑐

2𝑛(𝑛−1)
(𝐴 𝐴)

𝑖𝑗𝑘ℎ
  ,    

(where c is constant). 

The Lie-derivative of a general mixed tensor field  𝑇𝑗𝑘ℎ
𝑖  

is given by 

(2.7)       𝐿𝑣𝑇𝑗𝑘ℎ
𝑖 = 𝑣𝑚  ℬ𝑚  𝑇𝑗𝑘ℎ

𝑖 − 𝑇𝑗𝑘ℎ
𝑚  ℬ𝑚 𝑣

𝑖  

              +𝑇𝑚𝑘ℎ
𝑖  ℬ𝑗𝑣𝑚 + 𝑇𝑗𝑚ℎ 

𝑖 ℬ𝑘𝑣𝑚 

       + 𝑇𝑗𝑘𝑚 
𝑖 ℬℎ𝑣𝑚 + 𝜕̇𝑚 𝑇𝑗𝑘ℎ 

𝑖 ℬ𝑟𝑣𝑚𝑦𝑟  , where  𝑣𝑚 ≠ 0 . 

The Berwald covariant derivative of the contravariant 

vector field   𝑣𝑚 vanish identically, i.e: 

(2.8)       ℬ𝑗𝑣𝑚 = 0   . 

The Cartan's fourth curvature tensor 𝐾𝑗𝑘ℎ
𝑖 , Cartan's third 

curvature tensor  𝑅𝑗𝑘ℎ
𝑖  and the curvature tensor of 

Berwald 𝐻𝑗𝑘ℎ
𝑖  in recurrent Finsler space is defined as 

              ℬ𝑚𝐾𝑗𝑘ℎ
𝑖 = 𝜆𝑚𝐾𝑗𝑘ℎ

𝑖    ,      ℬ𝑚𝑅𝑗𝑘ℎ
𝑖 = 𝜆𝑚𝑅𝑗𝑘ℎ

𝑖   ,     

and        ℬ𝑚𝐻𝑗𝑘ℎ
𝑖 = 𝜆𝑚𝐻𝑗𝑘ℎ

𝑖   . 

Contracting the indices 𝑖 and ℎ  in above equation, we 

get 

(2.9)    a)   ℬ𝑚𝐾𝑗𝑘 = 𝜆𝑚𝐾𝑗𝑘     ,   b)    ℬ𝑚𝑅𝑗𝑘 = 𝜆𝑚𝑅𝑗𝑘  , 
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and       c)    ℬ𝑚𝐻𝑗𝑘 = 𝜆𝑚𝐻𝑗𝑘  . 

3. Fifth-Order Berwald Covariant 

Derivatives of Kulkarni–Nomizu Products 

in GBK-5R𝐅𝒏 Spaces 

This section presents the main theoretical contributions 

regarding the behavior of Kulkarni–Nomizu products 

and associated curvature tensors in generalized BK-fifth 

recurrent Finsler spaces (GBK-5RF𝑛).  

We systematically investigate the fifth-order Berwald 

covariant derivatives of the Kulkarni–Nomizu products 

formed by K-Ricci, R-Ricci, and H-Ricci tensors, 

establishing conditions under which these products 

exhibit fifth-order recurrence. The section further 

explores the Lie derivatives of these tensor products and 

their relationships with the fourth-order covariant 

derivatives, leading to a series of theorems and 

corollaries that characterize the recurrent behavior of 

associated curvature tensors 𝐾𝑖𝑗𝑘ℎ , 𝑃𝑖𝑗𝑘ℎ , and 𝑊𝑖𝑗𝑘ℎ . 

Additionally, we highlight special cases where symmetry 

in the Kulkarni–Nomizu products leads to vanishing 

fifth-order derivatives, emphasizing the interplay 

between tensor symmetries and higher-order geometric 

invariants. Overall, this section provides a rigorous 

analytical framework that connects tensor algebra, Lie 

derivatives, and higher-order Berwald derivatives, laying 

the groundwork for the derivation of the main results. 

Let us consider Kulkarni-Nomizu product of K-Ricci 

tensor and R-Ricci tensor (𝐾 𝑅)𝑖𝑗𝑘ℎ  defined as (2.3), 

then we have 

(3.1)    (𝐾 𝑅)𝑖𝑗𝑘ℎ = 𝐾𝑖ℎ𝑅𝑗𝑘 − 𝐾𝑖𝑘𝑅𝑗ℎ 

             +𝐾𝑗𝑘𝑅𝑖ℎ − 𝐾𝑗ℎ𝑅𝑖𝑘  . 

Taking the Lie -derivative of both sides of above 

equation, we get 

𝐿𝑣(𝐾 𝑅)𝑖𝑗𝑘ℎ = 𝑅𝑗𝑘𝐿𝑣𝐾𝑖ℎ + 𝐾𝑖ℎ𝐿𝑣𝑅𝑗𝑘 

             −𝑅𝑗ℎ𝐿𝑣𝐾𝑖𝑘 − 𝐾𝑖𝑘𝐿𝑣𝑅𝑗ℎ 

+ 𝑅𝑖ℎ𝐿𝑣𝐾𝑗𝑘 + 𝐾𝑗𝑘𝐿𝑣𝑅𝑖ℎ − 𝑅𝑖𝑘𝐿𝑣𝐾𝑗ℎ − 𝐾𝑗ℎ𝐿𝑣𝑅𝑖𝑘   . 

Using (2.7) and (2.8) in above equation, we get 

ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ = 𝑅𝑗𝑘ℬ𝑚𝐾𝑖ℎ + 𝐾𝑖ℎℬ𝑚𝑅𝑗𝑘 − 𝑅𝑗ℎℬ𝑚𝐾𝑖𝑘 

−𝐾𝑖𝑘ℬ𝑚𝑅𝑗ℎ + 𝑅𝑖ℎℬ𝑚𝐾𝑗𝑘 + 𝐾𝑗𝑘ℬ𝑚𝑅𝑖ℎ − 𝑅𝑖𝑘ℬ𝑚𝐾𝑗ℎ

− 𝐾𝑗ℎℬ𝑚𝑅𝑖𝑘  . 

Using [(2.9)a,b] in above equation, we get 

ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ = 2𝜆𝑚[𝐾𝑖ℎ𝑅𝑗𝑘 − 𝐾𝑖𝑘𝑅𝑗ℎ + 𝐾𝑗𝑘𝑅𝑖ℎ

− 𝐾𝑗ℎ𝑅𝑖𝑘] 

Let 𝜆𝑚 =
1

2
  and taking Berwald covariant derivative of 

fourth order for above equation  with respect to 𝑥𝑛 , 

 𝑥𝑙, 𝑥𝑞  and  𝑥𝑠, we get 

ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ = ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛[𝐾𝑖ℎ𝑅𝑗𝑘 −

𝐾𝑖𝑘𝑅𝑗ℎ + 𝐾𝑗𝑘𝑅𝑖ℎ − 𝐾𝑗ℎ𝑅𝑖𝑘] . 

Using (3.1) in above equation, we get 

(3.2)  ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ 

          = ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛(𝐾 𝑅)𝑖𝑗𝑘ℎ  . 

Thus, we conclude 

Theorem 3.1: In 𝐺ℬ𝐾 − 5𝑅𝐹𝑛 , the Berwald covariant 

derivative of fifth order is equal the Berwald covariant 

derivative of fourth order for the Kulkarni- Nomizu 

product (𝐾 𝑅)𝑖𝑗𝑘ℎ   if the covariant vector  𝜆𝑚 =
1

2
 . 

Now, we have two corollaries related to the previous 

theorem. Using the same steps as in the previous 

theorem, by taking the Kulkarni-Nomizu 

product (𝑅𝐻)𝑖𝑗𝑘ℎ  and (𝐾𝐻)𝑖𝑗𝑘ℎ   respectively, by 

using [(2.9) a,b,c] we obtain 

Corollary 3.1: In 𝐺ℬ𝐾 − 5𝑅𝐹𝑛 , the Berwald covariant 

derivative of fifth order is equal the Berwald covariant 

derivative of fourth order for the Kulkarni- Nomizu 

product (𝑅𝐻)𝑖𝑗𝑘ℎ   if the covariant vector 𝜆𝑚 =
1

2
  . 

Corollary 3.2: In 𝐺ℬ𝐾 − 5𝑅𝐹𝑛 , the Berwald covariant 

derivative of fifth order is equal the Berwald covariant 

derivative of fourth order for the Kulkarni- Nomizu 

product (𝐾𝐻)𝑖𝑗𝑘ℎ   if the covariant vector 𝜆𝑚 =
1

2
 . 

Using the Kulkarni- Nomizu product of K- Ricci tensor 

and R-Ricci tensor (𝐾 𝑅)𝑖𝑗𝑘ℎ  in (2.4), we have 

(3.3)      𝐾𝑖𝑗𝑘ℎ = 𝑅𝑖𝑗𝑘ℎ −
1

(𝑛−2)
(𝐾 𝑅)𝑖𝑗𝑘ℎ   . 

Taking the Lie - derivative of both sides of above 

equation and using (2.7) and (2.8), we get 

              ℬ𝑚𝐾𝑖𝑗𝑘ℎ = ℬ𝑚𝑅𝑖𝑗𝑘ℎ −
1

(𝑛−2)
ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ  . 

Taking Berwald covariant derivative of fourth order for 

above equation with respect to 𝑥𝑛 ,  𝑥𝑙 , 𝑥𝑞 and  𝑥𝑠 , we 

get 

              ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝐾𝑖𝑗𝑘ℎ = ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑅𝑖𝑗𝑘ℎ  

              −
1

(𝑛−2)
  ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ  . 

Using (2.1) in above equation, we get 

(3.4)      ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝐾𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚𝑅𝑖𝑗𝑘ℎ  

              −
1

(𝑛−2)
𝑎𝑠𝑞𝑙𝑛𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ  , 

if and only if 

(3.5)  ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ   . 

Above equation means that the Kulkarni-Nomizu 

product (𝐾 𝑅)𝑖𝑗𝑘ℎ behaves as fifth recurrent. 

Now, using (3.3) in right side of (3.4) we get 
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(3.6)     ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝐾𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚𝐾𝑖𝑗𝑘ℎ   . 

Thus, we conclude 

Theorem 3.2: In 𝐺ℬ𝐾 − 5𝑅𝐹𝑛 , the associate curvature 

tensor Kijkh of the curvature tensor 𝐾𝑗𝑘ℎ
𝑖  behaves as fifth 

recurrent if and only if the Kulkarni-Nomizu product 

 (𝐾 𝑅)𝑖𝑗𝑘ℎ  behaves as fifth recurrent [provided (2.2) 

holds]. 

Using the Kulkarni- Nomizu product of K- Ricci tensor 

with itself in (2.6), we have 

(3.7)   𝑊𝑖𝑗𝑘ℎ = 𝑅𝑖𝑗𝑘ℎ −
𝑐

2𝑛(𝑛−1)
(𝐾 𝐾)

𝑖𝑗𝑘ℎ
 

Taking the Lie - derivative of both sides of above 

equation and using (2.7) and (2.8), we get 

         ℬ𝑚𝑊𝑖𝑗𝑘ℎ = ℬ𝑚𝑅𝑖𝑗𝑘ℎ −
𝑐

2𝑛(𝑛−1)
ℬ𝑚(𝐾 𝐾)

𝑖𝑗𝑘ℎ 
 . 

Taking Berwald covariant derivative of fourth order for 

above equation with respect to 𝑥𝑛 ,  𝑥𝑙 , 𝑥𝑞 and  𝑥𝑠 , we 

get 

         ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑊𝑖𝑗𝑘ℎ = ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑅𝑖𝑗𝑘ℎ 

         −
𝑐

2𝑛(𝑛−1)
ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾 𝐾)

𝑖𝑗𝑘ℎ 
  . 

Using (2.1) in above equation, we get 

(3.8)  ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑊𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚𝑅𝑖𝑗𝑘ℎ  

         −
𝑐

2𝑛(𝑛−1)
𝑎𝑠𝑞𝑙𝑛𝑚(𝐾 𝐾)

𝑖𝑗𝑘ℎ 
 , 

if and only if 

(3.9)  ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾 𝐾)𝑖𝑗𝑘ℎ  

         = 𝑎𝑠𝑞𝑙𝑛𝑚(𝐾𝐾)𝑖𝑗𝑘ℎ    . 

Now, using (3.7) in right side of (3.8), we get 

(3.10)     ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑊𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚𝑊𝑖𝑗𝑘ℎ  . 

Thus, we conclude 

Corollary 3.3: In 𝐺ℬ𝐾 − 5𝑅𝐹𝑛 , the associate curvature 

tensor  𝑊𝑖𝑗𝑘ℎ  of the curvature tensor  𝑊𝑗𝑘ℎ
𝑖  behaves as 

fifth recurrent if and only if the Kulkarni-Nomizu 

product (𝐾 𝐾)𝑖𝑗𝑘ℎ behaves as fifth recurrent [provided 

(2.2) holds]. 

Using the K-Ricci tensor and H-Ricci tensor in (2.5), we 

have 

(3.11)   𝑃𝑖𝑗𝑘ℎ = 𝑅𝑖𝑗𝑘ℎ −
1

(𝑛−1)
(𝐾𝑖ℎ𝐻𝑗𝑘 − 𝐾𝑗ℎ𝐻𝑖𝑘)  . 

Taking the Lie - derivative of both sides of above 

equation and using (2.7) and (2.8), we get 

      ℬ𝑚𝑃𝑖𝑗𝑘ℎ = ℬ𝑚𝑅𝑖𝑗𝑘ℎ −
1

(𝑛−1)
ℬ𝑚(𝐾𝑖ℎ𝐻𝑗𝑘 − 𝐾𝑗ℎ𝐻𝑖𝑘) . 

Taking Berwald covariant derivative of fourth order for 

above equation with respect to 𝑥𝑛 ,  𝑥𝑙 , 𝑥𝑞 and  𝑥𝑠 , we 

get 

              ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑃𝑖𝑗𝑘ℎ =  ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑅𝑖𝑗𝑘ℎ 

              −
1

(𝑛−1)
 ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾𝑖ℎ𝐻𝑗𝑘 − 𝐾𝑗ℎ𝐻𝑖𝑘) . 

Using (2.1) in above equation, we get 

(3.12)     ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑃𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚𝑅𝑖𝑗𝑘ℎ 

              −
1

(𝑛−1)
𝑎𝑠𝑞𝑙𝑛𝑚(𝐾𝑖ℎ𝐻𝑗𝑘 − 𝐾𝑗ℎ𝐻𝑖𝑘)  , 

if and only if 

(3.13)    ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾𝑖ℎ𝐻𝑗𝑘 − 𝐾𝑗ℎ𝐻𝑖𝑘) 

              = 𝑎𝑠𝑞𝑙𝑛𝑚(𝐾𝑖ℎ𝐻𝑗𝑘 − 𝐾𝑗ℎ𝐻𝑖𝑘) . 

Now, using (3.11) in right side of (3.12), we get 

(3.14)    ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚𝑃𝑖𝑗𝑘ℎ = 𝑎𝑠𝑞𝑙𝑛𝑚𝑃𝑖𝑗𝑘ℎ  . 

Thus, we conclude 

Corollary 3.4: In 𝐺ℬ𝐾 − 5𝑅𝐹𝑛 , the associate curvature 

tensor 𝑃𝑖𝑗𝑘ℎ of the curvature tensor 𝑃𝑗𝑘ℎ
𝑖  behaves as fifth 

recurrent if and only if the tensor (𝐾𝑖ℎ𝐻𝑗𝑘 − 𝐾𝑗ℎ𝐻𝑖𝑘) 

behaves as fifth recurrent [provided (2.2) holds]. 

Now, if the the Kulkarni-Nomizu product of K-Ricci 

tensor and R-Ricci tensor (𝐾 𝑅)𝑖𝑗𝑘ℎ is symmetric in its 

indices 𝑖 and  𝑗 , then the equation (3.1), can be written 

as 

              (𝐾 𝑅)𝑖𝑗𝑘ℎ = 0  . 

Taking the Lie-derivative of both sides of above equation 

and using (2.7) and (2.8), then taking Berwald covariant 

derivative of fourth order for result equation with respect 

to 𝑥𝑛,  𝑥𝑙, 𝑥𝑞 and  𝑥𝑠, we get 

(3.15)     ℬ𝑠ℬ𝑞ℬ𝑙ℬ𝑛ℬ𝑚(𝐾 𝑅)𝑖𝑗𝑘ℎ = 0  . 

Thus, we conclude 

Theorem 3.3: In GℬK − 5RFn , the Berwald covariant 

derivative of fifth order for the Kulkarni-Nomizu product 

(𝐾 𝑅)𝑖𝑗𝑘ℎ   is vanishing if it symmetric in its indices 𝑖 

and  𝑗 . 

4. Engineering Applications 

The mathematical results obtained in this work on GBK-

fifth recurrent Finsler spaces provide significant 

implications for modern engineering systems modeled 

by Finsler-type geometries. The demonstrated 

equivalence between the fifth-order and fourth-order 

Berwald covariant derivatives of various Kulkarni-

Nomizu curvature products such as  (𝐾𝑅)𝑖𝑗𝑘ℎ  , 

(𝑅𝐻)𝑖𝑗𝑘ℎ  , (𝐾𝐻)𝑖𝑗𝑘ℎ  , (𝐾𝐾)𝑖𝑗𝑘ℎ  reveals a high degree of 

geometric stability and structural invariance of the 

underlying curvature tensors. 

Such properties are of substantial value in engineering 

fields where nonlinear dynamics evolve in non-

Euclidean geometric environments. 
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In geometric control theory, Finsler metrics have 

recently emerged as powerful tools to model anisotropic 

and non-linear cost structures. 

The recurrence conditions established in this paper imply 

that the associated curvature tensors preserve their form 

under higher-order Berwald differentiations, which 

corresponds to a type of dynamic invariance desirable in 

systems governed by repeated or prolonged control 

actions. 

This invariance directly enhances the robustness of 

stabilization, tracking, and regulation in nonlinear 

control systems. 

In robotic motion planning, particularly for autonomous 

systems operating in heterogeneous or direction-

dependent environments, Finsler geometry provides 

more realistic models than classical Riemannian 

approaches. 

The recurrence of the Kulkarni–Nomizu curvature 

products ensure the persistence of curvature-based 

constraints along optimal trajectories, contributing to 

trajectory stability, reduced computational sensitivity, 

and consistent geometric behavior of the robot’s velocity 

and acceleration fields. 

Moreover, the vanishing conditions such as the 

symmetry-induced relation (𝐾𝑅)𝑖𝑗𝑘ℎ = 0 indicate deep 

geometric symmetries that can be exploited in 

mechanical design, swarm coordination, and multi-agent 

engineering systems. 

These structures can be interpreted as indicators of 

inherent balance, energy symmetry, or geometric 

conservation within the mechanical system. 

Thus, the theoretical contributions of this paper provide 

a rigorous geometric framework that strengthens the 

mathematical foundation underlying several engineering 

technologies based on Finsler geometric modeling, 

including but not limited to: 

1. geometric nonlinear control, 

2. autonomous robot navigation, 

3. optimal path-planning, 

4. and stability analysis of anisotropic mechanical 

systems. 

5. Conclusions 

In this work, we examined the structure of generalized 

BK-fifth recurrent Finsler spaces GBK-5RF(𝑛) and 

established several recurrence relations for curvature 

tensors derived from the Kulkarni–Nomizu product. 

The main results demonstrate that, under the condition 

𝜆𝑚 =
1

2
, the fifth-order Berwald covariant derivative of 

the curvature products (𝐾𝑅)𝑖𝑗𝑘ℎ , (𝑅𝐻)𝑖𝑗𝑘ℎ , (𝐾𝐻)𝑖𝑗𝑘ℎ , 

and (𝐾𝐾)𝑖𝑗𝑘ℎ  coincides with their fourth-order 

derivative. This indicates a strong form of high-order 

geometric invariance, showing that these curvature 

structures remain stable under repeated geometric 

differentiations. 

Additionally, the necessary and sufficient conditions 

obtained for the recurrence of the associated curvature 

tensors 𝐾𝑖𝑗𝑘ℎ  , 𝑊𝑖𝑗𝑘ℎ  , 𝑃𝑖𝑗𝑘ℎreinforce the presence of deep 

geometric symmetries within these Finsler spaces. From 

an engineering standpoint, such high-order curvature 

invariance provides a solid mathematical foundation for 

several applications involving geometric modeling of 

nonlinear dynamical systems. 

In geometric control theory, the recurrence of curvature 

tensors implies persistent geometric constraints that 

enhance the robustness of stabilization and trajectory 

tracking. 

In robotic motion planning, these results support the 

development of Finsler-based path-planning algorithms 

capable of maintaining consistent geometric behavior in 

anisotropic or direction-dependent environments. 

The vanishing and symmetry conditions derived in this 

work further highlight geometric properties that can be 

exploited in mechanical systems, multi-agent 

coordination, and navigation algorithms. 

Thus, the theoretical developments presented here not 

only advance the study of recurrent Finsler geometry but 

also provide relevant mathematical tools for engineering 

systems operating in non-Euclidean geometric 

frameworks, particularly in control, robotics, and motion 

stability analysis. 
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 مقالة بحثية 

وأهميتها الهندسية للتحكم الهندسي   GBKالهندسة الفينسلرية المتكررة من الدرجة الخامسة من نوع 

 واستقرار حركة الروبوتات 

 3،2و عادل محمد علي القشّبري ،،*1سعيدة م. بليدي

 التربية، جامعة أبين، زنجبار، اليمنقسم الرياضيات، كلية  1
 netuniv-adel.math.edu@aden. قسم الرياضيات، كلية التربية، جامعة عدن، عدن، اليمن؛ البريد الالكتروني: 2
 قسم الهندسة الطبية، كلية الهندسة والحاسوب، جامعة العلوم والتكنولوجيا، عدن، اليمن 3

 saeedahbaleedi@gmail.com بليدي؛ البريد الالكتروني:* الباحث الممثلّ: سعيدة م. 

 2025ديسمبر  31نشر في  / 2025ديسمبر  18قبل في:   / 2025ديسمبر  05 استلم في:

 المُلخّص 

، وتحُلل سلوك BK (GBK-5RF)المتكررة من الدرجة الخامسة العامة من نوع   تتناول هذه الورقة البحثية الهيكل الهندسي لفضاءات فينسلر

باستخدام منتج كولكارني الرتبة.  لبيروالد عالية  التعاقدية  المشتقات  بها تحت  المرتبطة  تم وضع عدة شروط  –الموترات الانحنائية  نوميـزو، 

، تتطابق المشتقة التعاقدية  1/2mλ=تظُهر النتائج أنه، تحت الشرط  .  Pو  Wو  Hو  Rو  Kللتكرار للتعبيرات الانحنائية التي تشمل موترات  

من    لبيروالد من الرتبة الخامسة لهذه الموترات مع المشتقة من الرتبة الرابعة، مما يشير إلى شكل قوي من الاستقرار الهندسي عالي الرتبة.

الم للنمذجة  رياضياً صارمًا  أساسًا  الاستقرار  هذا  يوفر  هندسي،  وتخطيط حركة  منظور  الهندسي  التحكم  في  الفينسلرية  الهندسة  على  عتمدة 

  الروبوتات، حيث تسهم هياكل الانحناء المستقرة في تعزيز المتانة في الاستقرار غير الخطي، وتتبع المسارات، وتحسين المسارات في بيئات 

 غير متجانسة أو غير متماثلة.

الأنظمة الديناميكية  ؛تخطيط حركة الروبوتات ؛نوميـزو -  منتج كولكارني ؛شتقة التعاقدية لبيروالدالم ؛الهندسة الفينسلرية الكلمات المفتاحية:

 . غير الخطية
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